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1. Introduction

The main conclusion of the famous Capital Asset Pricing Model (CAPM) in-
vented by Lintner and Sharp is the following: Assume that an askat mean
excess returp; and variancer?, the market portfolio has mean excess retugn
and variancerg. Let v be the correlation coefficient between the return on the
asseti and the market portfolio. Thep; = o8 whereg; := 0i~i /oo. Though
CAPM reveals this remarkable linear relation it has been under strong criti-
cism, in particular, because empiricat (1;) values do not follow in the precise
manner the security market line. The alternative approach, the Arbitrage Pricing
Model (APM), was suggested by Ross in [20]. Based on the idea of asymptotic
arbitrage it has attracted considerable attention, see, e.qg., [4], [5], [12], [13], and
was extended to the Arbitrage Pricing Theory (APT). An important reference is
the note by Huberman [11] (also reprinted in the volume “Theory of Valuation”
[3]1) who gave a rigorous definition of the asymptotic arbitrage as well as a short
and transparent proof of the fundamental result of Ross.

In a one-factor version the APM is fairly simple. Assume that the discounted
returns on assets are described as follows:

X' = i + Bieo + 1

where the random variableg andr; have zero mean, thg are orthogonal and

their variances are bounded. Consider a sequence of “economies” or, better to
say, ‘market modelssuch that then-th model involves only the first securities.
Thearbitrage portfolioin the n-th model is a vectop" € R" such thaty"e" = 0

with e" = (1,...,1) € R". The return on the portfolip is

V(") = ¢"s"

wheres" = (x1,...,x"). Asymptotic arbitrages the existence of a subsequence
of arbitrage portfolios ¢"") (i.e. portfolios with zero initial endowments) whose
discounted returns satisfy the relatiof&/ (") — oo, 02(V (¢"')) — 0. If there

is no asymptotic arbitrage then there exists a congigrstuch that

> (i — pof5)? < oo

i=1

This means that between the parameters there is the “approximately linear” re-
lation i =~ poBi. We shall discuss this model under some further restrictions
in Section 6 and show that, in spite of the difference in definitions, the absence
of asymptotic arbitrage always implies that th&,(;)’s “almost” lay on the
security market line.

1 The reader can find a lot of relevant information in this book, which is a collection of the most
significant papers published from 1973 to 1986 accompanied by original essays of experts in the
field.
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Note that the approach of APT is based on the assumption that agents have
some risk-preferences and in the asymptotic setting they may accept the possibil-
ity of large losses with small probabilities; the variance is taken as an appropriate
measure of risk.

A striking feature of the classic APT is that it completely ignores the problem
of the existence of an equivalent martingale measure which is a key point of
the Fundamental Theorem of Asset Pricing. In the modern dynamic setting an
agent is absolutely risk-averse (at least, “asymptotically”), i.e. he considers as
arbitrage opportunities only riskless strategies. This concept seems to be dominant
in mathematical finance because of the great success of the Black—Scholes model
where the no-arbitrage pricing is such that the option writer avoids any risk.

A problem of extension of APT to the intertemporal setting of continuous
time finance was solved in our previous article [16] on the basis of an approach
synthesizing ideas of both arbitrage theories; it was shown that the Ross pricing
bound has a natural analog in terms of the boundedness of the Hellinger process.

In this paper we continue to study asymptotic arbitrage in the framework
of continuous trading (including discrete time multi-stage models as a particular
case). On an informal level one can think about a “real-world” financial market
with a “large” (unbounded) number of traded securities. An investor is faced with
the problem of choosing a “reasonably large” numbesf securities to make a
self-financing portfolio. Starting from an initial endowmar, a trading strategy
v leads to the final valu&/{(y) where the strategy and the time horizorm
also depend om. If an “infinitesimally” small endowment gives an “essential”
gain with a positive probability (without any losses) we say that there exists an
asymptotic arbitrage. To give a precise meaning to the above notions, it seems
natural to consider an approximation of a “real-world” market by a sequence of
models (i.e. filtered probability spaces with semimartingales describing dynamics
of prices of chosen securities) rather than a fixed model as in the traditional
theory. Such a device is of common use in mathematical statistics and results of
the latter can be applied in a financial context.

In [16] we formalized the concept of a large financial market and introduced
the notions of asymptotic arbitrage of the first and second kind. It was shown
that under the assumption of completeness of any particular market model the
absence of asymptotic arbitrage of the first kind is equivalent to the contiguity
of the sequence of the “objective” (reference) probabilities with respect to the
sequence of the equivalent martingale measures (which is unique in the complete
case). The criterion of the absence of asymptotic arbitrage of the second kind is
symmetric: the contiguity of the sequence of the equivalent martingale measures
with respect to the sequence of the “objective” probabilities. A theory of con-
tiguity of probability measures on filtered spaces is well-developed (for a nice
and complete exposition see [14]); it was applied in [16] to a particular model
which can be referred to as a “large Black—Scholes market”.

In recent work Klein and Schachermayer [17] made essential progress by
extending the no-arbitrage criteria to the incomplete case though under the re-
striction that the price processes are locally bounded. They discovered that there
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is no asymptotic arbitrage of the first kind if and only if the sequence of the “ob-
jective” probabilities is contiguous with respectgomesequence of equivalent
martingale measures. They also proved the surprising result that the correspond-
ing criteria for the absence of asymptotic arbitrage of the second kind is not a
symmetric version of the latter and involves a certain “condition”.

Here we continue to develop the theory initiated in [16] starting with some
ramifications and extensions of results of Klein and Schachermayer [17] and
polishing up simultaneously their original proofs by applications of the minimax
theorem. We introduce alternative criteria relating the absence of arbitrage with
contiguity of upper and lower envelopes of equivalent martingale measures; these
criteria look fairly symmetric, cf. the condition®) of Propositions 2 and 3, but,
of course, upper and lower envelopes are set functions with radically different
properties. We also show that asymptotic arbitrage with probability one (“strong
AA”) is related to the (entire) asymptotic separation of the sequences of the
“objective” probabilities and the envelopes of equivalent martingale measures.
The main tool in our analysis is the so called optional decomposition theorem (see
[8], [19], [9] for its successive development) which can be useful in the theory
of incomplete markets as a source of trading strategies. This theorem allows us
easily to get the mentioned criteria without any restrictions on the price processes.
However, the equivalence of the new criteria and those of [17] is nontrivial. We
established it as a corollary of rather general facts from a “contiguity theory”
for sequences of convex sets of probability measures; this refined setting (which
does not involve stochastic integration) is studied in Section 3. It should be
pointed out that the essential ingredient of our proofs of difficult implications is
basically the same as in [17]: we look at the problem in an abstract dual setting
and apply some arguments based on a separation theorem. The simplification
in our paper comes from a judicious use of the minimax theorem; this replaces
some of the direct and bare-hands arguments used in [17]. Criteria of contiguity
and asymptotic separation in terms of the Hellinger integrals similar to that of
the classic theory are proved.

Section 4 is devoted to an extension of the “contiguity theory on filtered
spaces” based on the concept of the Hellinger process which is especially impor-
tant for use of the general results in the specific context of financial models. As
an application, in Sectin5 a problem of asymptotic arbitrage is studied for a
large market where stock price evolution is given by linear stochastic differential
equations which may have random coefficients. Under a certain assumption on a
correlation structure of the driving Wiener processes we get effective criteria of
absence of asymptotic arbitrage or existence of asymptotic arbitrage with prob-
ability one. Further applications are given in Sections 6 and 7 where we treat
a one-stage model with an infinite number of assets (which is the one-factor
APM with a particular correlation structure when there is a “basic” source of
randomness) and a discrete-time model with two assets and infinite horizon. We
show that in spite of the difference in the definitions of asymptotic arbitrage our
approach gives results which are consistent with the traditional APT.
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Notice that in the discrete-time setting a semimartingale is simply an adapted
process and there are absolutely no problems with stochastic integrals. Therefore
we hope that the major part of the paper concerning financial modeling (especially
Sections 2 and 6) will be accessible to the reader with a standard probabilistic
background.

2. Asymptotic arbitrage and contiguity of martingale measures

Let B" = (2",. 7" F" = (#"),P"), n € N, be a stochastic basis, i.e. a filtered
probability space satisfying the usual assumptions, see, e.g., [14] (this book is also
our main reference for contiguity, Hellinger integrals, and Hellinger processes).
For simplicity we assume that the initiatalgebra is trivial (up tdP"-null sets).
Asset prices evolve accordingly to a semimarting@le= (§");<» defined on

B" and taking values iRY for somed = d(n).

We fix a sequencd" of positive numbers which are interpreted as time
horizons. To simplify notation we shall often omit the superscript and Write

We shall say that the tripleB(', S", T") is a security market modednd that
the sequenc# = {(B",S", T")} is alarge financial market

We assume that there exists an asset whose price is constant over time and
that all other prices are calculated in units of this asset. Markets are frictionless
and admit shortselling.

We denote by?" the set of all probability measuré&3d" equivalent toP"
and such that the proces§"}i<t is a local martingale with respect @"; we
refer to " as the set of local martingale measures. Certainly, it may happen
that ©" is empty. The existence of a meas®8 € ¢" is closely related to
the absence of arbitrage on the mark&t,S", T"), while the unigueness is the
property connected with the completeness of the market (see the pioneering paper
[10] and, for a modern treatment, [6] and references therein).

Our main assumption is that the s&&' are nonempty for alh.

We define a trading strategy 0B, S", T") as a predictable proceg$ with
values inRY such that the stochastic integral with respect to a semimartingale
Sr'l

t
g = /0 (r,ds")
is well-defined on [0T]. Notice that if the procesg" - S" is bounded from

below (or from above) by some constant, it follows from the Emery—Ansel-
Stricker theorem [1] that it is a local martingale on TQ with respect to any

Qeon.
For a trading strategy" and an initial endowmenx" the value process
V(") is given by
t
W) =X S = [ as).
0

We shall include a positive numba&f (an initial endowment) in the definition
of a trading strategy.
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Definition 1 A sequence of trading strategie$ realizes the asymptotic arbi-
trage of the first kind if

la) V(") > O0forallt <T;

1b) lim, V§'(¢™) = 0 (i.e. lim, x" = 0);

1c) limy PP (VP (") > 1) > 0.

Definition 2 A sequence of trading strategies realizes the asymptotic arbi-
trage of the second kindif

2a) V"(e") < 1forallt <T;

2b) lim, V(") > 0;

2¢) limp P"(V{(™) > €) = 0 for anye > 0.

Definition 3 A sequence of trading strategie8 realizes the strong asymptotic
arbitrage of the first kind (SAA1) if

3a) "(¢") >0forallt <T;

3b) lim, V§'(¢") = 0 (i.e. limy X" = 0);

3c) limy P"(V7 (™) > 1) =1

Notice that 3a) and 3b) are the same as 1a) and 1b).

Definition 4 A sequence of trading strategie8 realizes the strong asymptotic
arbitrage of the second kind(SAA2) if

da) V") <1lforallt <T;

4b) lim, Vg'(") = 1;

4c¢) lim, P"(V{(¢") > ¢) = Ofor anye > 0.

To achieve an “almost non-risk” profit from the arbitrage of the second kind,
an investor sells short his portfolio. In the market there is a bound for the total
debt value which we take to be equal to 1.

Remark.From a sequence of trading strategies realizing SAAL it is easy to
construct a sequence realizing SAA2 and vice versa. However, there is a slight
difference between two concepts related to assumptions on the market regulations.
In principle, one may impose a constraint that the total debt value should be equal
to zero, or be infinitesimally small, or be bounded by a constant. Certainly, the
first and the second variants exclude a game with the asymptotic arbitrage of the
second kind.

Definition 5 A large security markeM = {(B", S", T")} hasno asymptotic ar-
bitrage of the first kind (respectively, of theecond king if for any subsequence
(m) there are no trading strategigg™) realizing the asymptotic arbitrage of the
first kind (respectively, of the second kind) {¢B™, S™, T™M)}.

To formulate the results we need to extend some notions from measure theory.
Let & = {Q} be a family of probabilities on a measurable spae.%).
Define the upper and lower envelopes of the measur&g ab functions on7
with Q(A) := SURye Q(A) and Q(A) = infoey Q(A), respectively. We say that



Asymptotic arbitrage 149

¢ is dominated if any element af’ is absolutely continuous with respect to
some fixed probability measure.

In our setting where for every a family " of equivalent local martingale
measures is given we shall use the obvious notat@nnand Q".

Generalizing in a straightforward way the well-known notions of mathemat-
ical statistics (see, e.g., [14], p. 249) we introduce the following definitions:

Definition 6 The sequencéP") is contiguous with respect to(@n) (notation:
(PM) < (Q")) when the implication

im Q' (A")=0 = lim P"(A") =0
n— oo n—o0
holds for any sequence’A& .7 ", n > 1.
Evidently, P") « (Gn) iff the implication

lim sup Eq¢"=0 = lim Epng" =0

N—o0 gepn n— oo
holds for any uniformly bounded sequengkof positive.7 " -measurable func-
tions.

Definition 7 A sequencéP") is (entirely) asymptotically separablefrom (6“)
(notation: (P™) A (6”)) if there exists a subsequenfm) with sets A' ¢ . 7™M
such that

im Q" (A™ =0, lim P™A™) =1.

m—oo m—oo

The notations Q") < (P") and Q") A (P") have the obvious meaning. It is
clear that P") A Q") iff (Q") A (P).
We shall use the following result, [8], [19]:

Proposition 1 Let & be the set of local martingale measures for a semimartin-
gale S and let be a positive bounded random variable. Then there exists a pos-
itive process X with regular trajectories which is a supermartingale with respect
to any Qe ¢ such that

Xi = ess sufEq(§ | %) P-as.
Qer
Our approach is based on the optional decomposition theorem. This result
is due to El Karoui and Quenez [8] in the case of continuous semimartingales
and was proved for general locally bounded semimartingales in [19]. We use
here a version taken from [9] where an alternative proof allows one to drop the
assumption of local boundedness.

Theorem 1 Let ¢ be the set of local martingale measures for a semimartingale
S. Assume that a positive process X is a supermartingale with respect to every
Q € ¢. Then there exists an increasing right-continuous adapted process C,
Co =0, and an integrandp such that X=Xg+¢ -S—C.
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Now we formulate and prove the main results of this section.

Proposition 2 The following conditions are equivalent:
(a) there is s N0 asymptotic arbitrage of the first kind (NAAL);
(b) (P") < (Q");
(c) there exists a sequencé@ R ¢" such that(P") < (R").

Proof. (b) = (a) Assume that§") is a sequence of trading strategies realizing
the asymptotic arbitrage of the first kind. For aQye " the process/" (")
is a nonnegative locdD-martingale, hence ®-supermartingale, and

sup EqVT(¢") < sup EqVg'(¢") =x" = 0
Qeen Qeon

by 1b). Thus,

Q'(VP(e" = 1) = sup Q(Vf(¥") > 1)~ 0
Qegon

and, by virtue of the contiguityF(“)q@n), it follows thatP"(V{'(¢") > 1) — 0
in contradiction with 1c).
(@) = (b) Assume thatR") is not contiguous with respect t@?). Taking a
subsequence, if necessary, we can find $&tse .7 " such that@n(F“) —
0, P"(I'™) — v asn — oo wherey > 0. According to Proposition 1 there exists
a regular procesX" which is a supermartingale with respect to &@ye "
such that

X{" = ess supEq(Im | . A") P"-as.

Qegn

By Theorem 1 it admits a decompositioff' = Xg + ¢" - S" — C" wherey" is
an integrand foiS™ andC" is an increasing process starting from zero. Let us
show thatV "(¢") := X +¢" - S" are the value processes of portfolios realizing
AAL. Indeed,V"(©x") = X"+C" > 0,

V§(¢") = sup Eqlm =Q"(I'™) — 0,
Qegn

and

lim PV (") > 1) > lim P(XF > 1) = im P"(4} = 1) = imP"(I™) = 7 > 0.

(b) < (c) This relation follows from the convexity of’" and Proposition 5 in
Section 3 below

To formulate the next result we introduce

Definition 8 The sequence of sets of probability measyr@8) is said to be
weakly contiguous with respect to(P") (notation:(Z")<,, (P")) if for anye > 0
there ared > 0 and a sequence of measure8 @ ¢" such that for any sequence
A" € .7 with the propertylim sup, P"(A") < ¢ we havdim sup, Q"(A") < ¢.
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RemarkFor the case when the sefs' are singletons containing the only measure
Q" the relation ") <, (P™) means simply that@") < (P™).

Obviously, the property@") <, (P") can be reformulated in terms of func-
tions rather than sets:

for anye > 0 there are§ > 0 and a sequence of measure§ @ ¢" such
that for any sequence oF "-measurable random variableg, 0 < ¢" < 1, with
the propertylim sup, Epng" < 6, we havdim sup, Eqng" < e.

Proposition 3 The following conditions are equivalent:
(a) there is no asymptotic arbitrage of the second kind (NAA2);
(b) Q") a(P™);
(©) (&) <w (P).

Proof. (b) = (a) Assume that{") is a sequence of trading strategies realizing
the asymptotic arbitrage of the second kind. By the contigu@y)( (P") it
follows from 2c) thatQ"(V{(¢") > &) — 0 or, equivalently Q"([V{(¢")]* >

g) — 0. Since 0< [VP(¢M)]* < 1 we have that

Jf VP < =+ QA" = 9)

and hence irfcon Eq[VT(¢")]" — 0 asn — co. The process\"(¢")]" is a
submartingale with respect to ay € ¢&". Thus,

Vo'(@") < [Vg'(e"]" < o Eo[VT (¢"]" — 0

contradicting 2b).

(a) = (b) Assume that@") is not contiguous with respect t&{). Taking a
subsequence, if necessary, we can find $€ts= .7 " such thatP"(I™) — 0
while Q"(I™) — v > 0 asn — oo. According to Proposition 1 (applied with
& = —Im) there exists a regular procex8 which is a submartingale with respect
to anyQ" € ¢" and

X" =ess inf Eq(lpn | .Z") PM-a.s.
t Qeon ol |- A")

By Theorem 1 we have the decompositih = X7 + " - S" + C" where" is

an integrand folS" andC" is an increasing process starting from zero. To show
thatV"(¢") := X' + " - S" are the value processes of portfolios realizing AA2
we notice thatv"(¢") = X" — C" < 1,

AL (pn = = inf E |pn—Qn rn —v>0
O( ) XO QIGC/" Q ( ) >V,
and for anys €]0, 1]

lim supP™(V(¢") > £) < lim PM (X! > &) = lim P" (X! = 1) = limP"(I™) = 0.
n n n n

(b) < (c) This equivalence follows from Proposition 6 in SectionB.
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Remark.The equivalence ofa) and €) in Propositions 2 and 3 is the main
result of [17] where it is proved under the assumption B locally bounded.
Clearly, for the case where eagh" is a singleton the conditionA") <, (P")
simply means contiguity. However, in general situation it may happendHtat
does not contain a sequené@™) such thatQ")<(P"). For an example see [17].

Proposition 4 The following conditions are equivalent:
(a) there is Enstrong asymptotic arbitrage of the first kind (SAAL);
(b) P A Q)
(c) there is a strong asymptotic arbitrage of the second kind (SAA2);
@ @Q") AP,
(e) (PM) A (QM) for any sequence Qe ",

Proof. (a) = (b) The existence of SAA1 means that along some subsequence
(m) there are trading strategies such thigt(¢™) — 0 butP™(V{"(p™) > 1) —
1. As in the proof of the implicationb) = (a) of Proposition 2 we infer that
Gm(VTm(gam) > 1) — 0 and hence the sefd" = {V["(¢™) > 1} form the desired
separating subsequence.
(b) = (a) To find a subsequence of trading strategies realizing SAAL we use the
same arguments as those in the proof of the implicatidn={ (b) of Proposition
2. The only difference is that in the present case we hawel.

From any sequence realizing SAAL it is easy to construct a sequence realizing
SAA2 and vice versa. Henca)(< (c). In Proposition 7 we show thab) < (e).
Equivalence ofl§) and () is clear. [

3. Contiguity and asymptotic separation

Werz1 start with a result which gives alternative descriptions of the propBfty<
Q).
Our proof uses the minimax theorem, see, e.g., [2]:
Theorem 2 Let f : X x Y — R be a real-valued function, let X be a compact
convex subset of a vector space, and let Y be a convex subset. Assume that
1)foranyye Y the function x— f (x,y) is convex and lower semicontinuous;
2) for any xe X the function y— f (x,y) is concave.
Then there exists € X such that
supf (X,y) = supinf f(x,y) = inf supf (x,y).
yey yey xeX xeX yey
Proposition 5 Assume that for any n> 1 we are given a probability space
(2",. 7", P") with a dominated familyZ" of probability measures. Then the
following condji]ons are equivalent:
(@ (P <(@Q);
(b) there is a sequence™R convZ’" such that(P") < (R");
(c) the following equality holds:
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limliminf  sup H(o,Q,P") =1,
al0 N—00 geconygn

where H(a, Q, P) = [(dQ)*(dP)*~* is the Hellinger integral of ordewx €10, 1[;
(d) the following equality holds:

lim limsup inf P"(dP"/dQ > K) =0.

K=o nooo Qeconvy

Proof. The implication b) = (a) is trivial while the implication ) = (c) is

a corollary of the criterion of contiguityR") < (R") in terms of the Hellinger
integrals, see [14].

(c) = (d) To prove this part we recall some notation concerning the Hellinger
integrals. LeP, Q be two probabilities on some measurable space(P+Q)/2,

zp = dP/dv, zop = dQ/dv. ThenZ = 7 /75 is the density of the absolutely
continuous component @& with respect taQ. For a €]0, 1] put

d3 (o, Q,P) = E,pa(20, 20)
where

Yo, v)=au+ (@ —a)v —u*t=* >0, u, v>0.

It is usual to omit the parameter=1/2 in notation.
Notice that

(1 — @)p(u, v) < pa(U,v) < 8p(U,v) = 4(/U — V)% @)

Obviously,d3 («,Q,P) = 1 — H(a,Q,P) and €) can be rewritten (in a more
instructive way) as

lim limsup inf  d3(a, Q,P") =0. 2

al0 nooo Qeconvgn

It is clear that for anyx €]0,1/2] there existK = K(a) > 4 such that for
all u, v > 0 we have

2
Va(U, V)l y>kuy > ©1/2(U, V) fy>kuy = (1/2)<\f - \/17) lfv>Kuy-
It follows that

dﬁ (O@Q, P) > EV()DOL(ZQ7ZP)I{ZPZKZQ} > EV(}Q(ZQaZP)I{ZPZKZQ} =
= (2 (VI/Z - 1) 12k} > (/BPZ > K),

Applying the resulting inequality
P(Z > K) < 8d3(c, Q. P) (3)

to the case wheR = P" andQ is an arbitrary element of con¥" we get that
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lim lims inf P"(Z >K)<8lims inf  d? PY). 4
am limsup _inf (Z >K)< Imsup, _Inf . fi(a,Q,P").  (4)

Thus, (2) implies

lim limsup inf P"(Z >K)=0.

KToo pnsoo Qeconvg™

(d) = (a) From the Lebesgue decomposition it follows that
P (A") = EqZl{a, z<k} +P"(A", Z > K) <KQ(A")+P"(Z >K) <

<KQ"(AM) +P"(Z > K).

Therefore,
PY A" < KQ'(AM+ inf P"(Z >K).
Qeconvg™

If Q" (A") — O then
limsupP"(A") < limsup inf ) P"(Z>K)—0, K — oco.

n—oo n—oo QEconvy

(a) = (b) Without loss of generality we can assume that all the measures are
defined on a unique measurable spate.%) and are dominated by a fixed
probability . For such measures we shall consider the topology induced by
LY(u)-convergence of their densities with respecjuto

Put

D™ ={helL®): Epph >¢, 0<h <1}.

This set is convex and closed a(L> (1), L1(1)).

It is easy to check that

(P”)q(@n) < limsup inf sup Egh >0 foralle >0.

n—oco hebDmMe Qeconvg"

By the minimax theorem the condition on the right-hand side is equivalent to

limsup sup inf Eqgh >0 foralle>0.
n—oo Qeconvgn hED™e

Hence, for anyy = 1/k there is a sequence of probability measur8sx from
convZ" such that

limsup inf Egnech =9 > 0.
n—oo hebme

Put
1 SN
_ —kph,e
Rn‘m%_lzz R™<x.

Evidently, for alle = 1/k (and hence for alt) we have that

limsup inf Egnh >0
n—oo heDMe

which is equivalent to contiguityR") < (R"). O
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Remark.The well-known Halmos—Savage lemma asserts ¢has a dominated
family of measures iff it contains an equivalent countable subset. This implies the
following qualitative corollary: If¢ is a dominated family an® is a probability

on (2,.7) such thatP < Q, then there is a countable convex combination

of elements ofZ such thatP <« R.

The implication &) = (b) in Proposition 5 is an asymptotic version of this
corollary. Both a quantitative and a dual version of the above corollary are proved
in [18], and these general results are then used to derive the no-arbitrage criteria
of [17].

Proposition 6 Assume that for any n> 1 we are given a probability space
(2",. 7", P") with a convex dominated s&¥" of probability measures. Then
the following conditions are equivalent:

(@) (@M <« (PM);

(b) (@") < (P");

(c) the following equality holds:

lim liminf sup H(a,P",Q) =1;

al0 nN—oo Qegn

(d) the following equality holds:

lim limsup inf Q(dQ > K> =0.

K=o nooo QEOM dpn —

Proof. (a) & (b) Again we can suppose that all measures are dominated by a
unique measurg. Let us consider the s@&"° = {g: Epng < §, 0< g <1}
which is convex and closed i(L> (), L*(x)). Since

(QM<a(P") <= limsuplimsup sup inf Eqg =0,
510 n—oo gepns QEC"

(@") <w (P") <= limsuplimsup inf sup Eqg =0,
510 n—oo QEC" geBNd

the assertion follows immediately from the minimax theorem.
(b) = (d) By the Chebyshev inequality

dQ
n == > < .
207" (g 2 ) <20k

With this remark the assertion follows directly from the definition of weak con-
tiguity.
(d) = (c) From the elementary inequality

(pa(ua U) < 8aln K‘)D(u7 ’U)I{’USKU} + 8(:0('“'7 U)I{U>Ku}
which holds wherK > e, we deduce that for an@) € "

dﬁ (CY, Pn7 Q) < 8arIn Kdlgl (Pn? Q) + 8EV<P(ZP” 3 ZQ)I{ZQ>Kan} <
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dpn
dQ

- 1) l{dQ/apr>k} < 8alnK +4Q ( 9 . K) :

gsaan+4EQ< 3o >
©)

Thus,

ald nooo nooo QECN dpPn —

lim I|msup |nf dH (o, P",Q) < 4limsup inf Q < dQ > K>

yielding the result.

(c) = (d) The reasoning follows the same line as in the corresponding impli-
cation of Proposition 5. By (3) we have that for any €]0,1/2] there exists

K > 4 such that for anQ € ¢"

Q (;’Q ) < 842 (a,P", Q).

Hence,

limsuplimsup inf Q (dQ > K)

K—oo n—oo QEC" dpn —
<8I|msup mf dH(a P"Q)—0, «alO,

n—oo

by the assumptionc].
(d) = (a) Since

n n n n H dQ
QA < kP + inf Q (g% 2K ).

we see that wheR"(A") — 0 we also hav®"(A") — 0. O
Now we prove the criteria for asymptotic separation.

Proposition 7 Assume that for any i~ 1 the convex family?" of probability
measures is dominated. Then the following conditions are equivalent:

@ (PMHAQY:;

(b) (P™ A (QM) for any sequence Qe O

(c) for somex €]0, 1]

liminf sup H(o, Q,P") =0;

N—00 gepn

(d) the above equation holds for all €]0, 1[;
(e) foralle >0

liminf sup P" (dQ > g) =0

n—oo QEC/n dpn -

() Q") A (P").
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Proof. (a) < (b) Let U" be the unit ball inL>(x") with center at zero where
u" is a measure dominating” and Z". Let dy be the total variation distance.
Notice that

limsupdy (P",0")=2 <= limsup inf sup(EQg Epng) = 2,
n

n—soco QEC" 4

PHA@Q") <« limsup sup |nf (Eqg —Epng) =
n—oo gEUrl 7
An application of the minimax theorem shows thag) ( holds iff
limsup, dy(P",Z") = 2 or, equivalently, iff limsupdy (P",Q") = 2 for ev-
ery Q" € ¢"; the latter condition is equivalent ti),
The equivalence oft], (d), and €) is because of the following easily verified
bounds ([14], V.1.7, V.1.8):

E\® n dQ n [e% n dQ
(5) P (dpn25)<H(aQP)<25 +25%- +(5) P (dpn>5>'

The relation p) < (c) follows from the well-known inequalities (see, e.g.,
[14], Prop. V.4.4)

2(1-H(@Q,P") < dv(P",Q) <21 -H2Q,P").

The equivalence ofa) and ) is obvious.O

4. Contiguity and asymptotic separation on filtered spaces

Now we again consider the situation which interests us most, with a given dom-
inated family¢Z" on a stochastic basB" = (2",.7 ", F" = (% "), P"). We now

use the notatiorzen, zg for the density processes (or local densitiesP8fand

Q with respect tov = (P" +Q)/2. Then the proces& = Zj = zpn/2q is the
density process of the absolutely continuous compone"ofith respect to

Q. Notice that we can add to the list of equivalent conditions in Proposition 5
the following condition:

(6.d') the following equality holds:

n * —_
Jm, msupo Iof 5, P76 = K) =0
whereZ* = sup Z.

We can add to the formulation of Proposition 6 in a similar way.

Fora €]0, 1] and a pair of probability measur€sandP given on a filtered
space the Hellinger proceb$a, Q, P) is defined in the following way, see [14].
Let Y(a) = zg‘zé*“. Obviously, Y («) is a boundedv-supermartingaley =
(P + Q)/2. It admits the multiplicative decomposition(a) = M (o) & (—h(«))
whereM (o) is a localv-martingale until the moment when Y («) hits zero,
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h(a) is a predictable increasing process uniquely defined untits' (—h(a))
denotes the Délans exponential, i.e. the solution of the linear equation

7 (~h(a)) =1 - #_(~h(a)) o h(a),

o denotes integration with respect to an increasing process. Such a pn¢egss
h(a,Q,P) is called the Hellinger process of order (the parametery = 1/2
is usually omitted). The Doob—Meyer additive decompositionYdf:) can be
written in the following specific form:

Y(a)=1-Y_(a)oh(a) +M(a). (6)

It can be shown that
E [Y-(a) o h(@)]? < 4. (7)

Indeed, letA = Y_(«) o h(a) and N; := Yi(a) — E(Yoo(@).Z). ThenN; =
E(Ao|- ) — A;, i.e. N is the potential generated by the predictable increasing
processA. Clearly, EA, < 1, N <2, and the inequality (7) follows from the
energy formuleEAS, = E(N +N_) o A, see [7], VI.94,

The theorems below are generalizations of the Liptser—Shiryaev criteria of
contiguity of sequences of probability measures on filtered spaces, [14], Theorem
V.2.3.

Theorem 3 T@nfollowing conditions are equivalent:
@ (P (@)
(b) foralle >0

lim limsup inf P"(heo(a,Q,P") >¢)=0.

ald npnooo Qeconvg”

Proof. (a) = (b) By Proposition 5 the conditiora] is equivalent to the existence

of a sequenc®" € convZ" such that P") is contiguous with respect td{).

An application of the Liptser—Shiryaev theorem gives the result.

(b) = (a) The desired assertion is an easy consequence of (2) and of the in-
equality given by the following lemma.

Lemma 1 For anya €]0,1/4[, n €]0,1[, ande > 0
dfi (@, Q,P) < 167%/* + 2y~ + 2v27 H{P(hee (@, Q,P) > £)}¥/%. (8)

Proof. Let I' = {zo_ < 5} and let{(a) = z§ 2z ® o h(a) where h(a) =
h(«, Q, P). Taking the mathematical expectation with respect-tof the ad-
ditive decomposition (6) we deduce that

dfi (e, Q.P) = E,z3_2=" o h(@)os = Epuc ().
On the setl”

2§ 75 < 2z, VYA < 2gMAgs 1 < antizgP2 2,
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By the second inequality in (1) the differencke -8 h(«) is an increasing process.
Hence,

Eplr 0 &(0)o < 160"*Epéoe < 16nM/%. )
Using the bound (7), we get that
Epll 7 0 &(@)o)? < 2E.[1725-25 (20— /1) o h(@)oc]® < 8772 (10)
Thus,
Eplroé(a)oe <20 %e +Eplin_(a)>e} F o (@) <
< 2%+ {Ep[l 7 0 £(@)oc]} 2 {P (o () > )} 2.
The bound (8) holds by virtue of (9), (10), and the above inequality.

Theorem 4 Assume that the familg" is convex and dominated for any n. Then
the following conditions are equivalent:

(@ Q"< (P");
(b) foralle >0

I|m lim sup |nf Q(hoo(ar, P" Q) >¢)=0.

n—oo Q€

Proof. (a) = (b) Sinced3 (o, P",Q) = Eqzsh_75% oh(a, P", Q) We have for
anyK > 1 and ¢ > 0 that

03(0,P", Q) > e | Qe P Q) 2 ) - Q (supjg =)
t t

From the other hand, by (5) faf > e

d3(a,P",Q) < 8aInK +4Q (dQC’O > K).

Hence,

Qho(@,P",Q) > &) < Q(sunodQ > )
v dP

+ g {8aInK +4Q (supO|Qt > K)} .
t

dP?
dQ
n > < .
<s:l{|pdptn > K) <1/K

Let » > O be arbitrary. By &) and the conditiond) of Proposition 6 there are
a sufficiently largeK and a sequenc®" € " such that

Notice that

Q"
. n <
I|mnsupQ (supdpn > ) <n

Therefore,
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lim suinng Q(hso(a, P, Q) > ¢) < n+ (K*/e)[8arInK + 4]
eon

n—oo

and the conditionk) holds.
(b) = (a) An application of Lemma 1 (with a correspondent adjustment of
notations) together with the condition)(of Proposition 6 gives the resulfl

We complete this section by the following result concerning asymptotic sep-
aration where we assume that for any> 1 the convex familyZ" of probability
measures is dominated.

Theorem 5 (a) If (P") A (Q") then

lim limsuplimsup inf P"(hy(a, Q,P") > ) = 1;
70 40 n Qeon

(b) if
limsup inf P"(hoo(Q,P™) >N)=1
n Qeon
for all N > O then(P") A (Q").

Proof. (a) For anyn > 0 andd > 0 the following inequality holds:

1-H (ana Pn) S 27} + 2517& + <§) Pn(hoo(ana Pn) Z 77)3

see (V.2.25) in [14]. It implies the desired relation because, by Proposition 7, for
all a €, 10,1]

liminf sup H(c,Q,P™) =0.

n—oo QGQ“

(b) One can use the inequality

d/(P",Q) > 2(1- VErr exp(~he(Q.P)}),
see [14], Th. V.4.21. Since

sup Epn exp{—hwo(Q,P")} < e ™™ + sup P(h..(Q,P") < N)
Qeon Qegn

the assumption implies that lim sugy (P", ") = 2, and the assertion follows
from Proposition 7.0
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5. Example: the large BS-market

In the paper [16] we considered the problem of asymptotic arbitrage for a “large
Black—Scholes market” where the dynamics of discounted asset prices were given
by geometric Brownian motions with a certain correlation structure. Here we
study a more general setting covering, in particular, a case of stochastic volatil-
ities.

Let (12,.7 ,F = (%), P) be a stochastic basis with a countable set of inde-
pendent one-dimensional Wiener processési € Z,, w" = («°,...,w"), and
let F" = (™) be a subfiltration ofF such that @", F") is a Wiener process
in the sense that it is a martingale with"); = tln+; whereln.; is the identity
matrix. Notice that=" may be wider than the filtration generated Y.

The behavior of the stock prices is described by the following stochastic
differential equations:

dX® = X dt + ooX2dw?,

dX! = X/ dt + oy X! (3 dwl + yidw)), €N,

with deterministic (strictly positive) initial points. The coefficients afe-
predictable processes,

t t
/ i (s)]?ds < oo, / |oi (s)[?ds < oo
0 0

for t finite and~? +~2 = 1. To avoid degeneracy we shall assume that- 0
and~; > 0. .
Notice that the proces§ with

d{t' ='yidwto+’%dwi, fé):O,

is a Wiener process. The model is designed to reflect the fact that in the market
there are two different types of randomness: the first type is proper to each stock
while the second one originates from some common source and it is accumulated
in a “stock index” (or “market portfolio”) whose evolution is described by the
first equation.
Set YiOi _ 7i0io
5‘ — o _ 7o O'

g0 O'S

In the case of deterministic coefficienfs,is a well-known measure of risk which
is the covariance between the return on the asset with numaed the return
on the index, divided by the variance of the return on the index.

Let us consider the stochastic baBis= ({2,.7, F" = (Z ")i<1, P") with the
(n+1)-dimensional semimartinga®" := (X2, X2, ..., X") andP" := P|.7Z". As-
sume for simplicity that the time horizoh does not depend om. The sequence
M = {(B",S",T)} is a large security market. In our case ed¢B",S", T)} is,
in general, a model of an incomplete market as we do not supposé&that
generated by" and the set of equivalent martingale measut€s may have
infinitely many points.
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Let by(t) := (bo(t), bu(t), ..., bn(t)) where
boi= 10, = Ao _p

)

0o gi%i

Assume that .
/ |bn(t)]?dt < oo
0

andEZ; (b) = 1 where the strictly positive random varialde(b) is the Girsanov
exponential

T T
ze) = expf [ oo, 00) - 5 [ oncorat}

(e.g., these conditions are fulfilled for boundgdand finiteT). In other words,
Zr(b) = dQ"/dP" whereQ" is a probability measure agZ" equivalent toP".
By the Girsanov theorem the process

g=wyp — / bn(s)ds

is Wiener undeQ" and, thereforeQ" belongs to the sef’" of equivalent (local)
martingale measures.

Proposition 8 The following conditions for the large financial markigt are
equivalent:

(a) NAAL;

(b) Ur < oo P-a.s. where

o [ (8]

Proof. According to Proposition 2 and Theorem 3 the property NAAL is equiv-
alent to the following condition:

lim Ilmsup |nf P(hT(a Q,P)>¢)=0 foralle >0.

ald nooo

Under an arbitrary measu@ € ¢/" the processi" is a local martingale with
(WM"Y =tln+1, 1.€. @ Wiener process. Set

2052 [ (o) 5 (2522

i=1

By Theorem 1V.3.39 in [14] we have the inequality(c, Q, P") > h®(a). Since
h%(a) = hr(a, Q", P"), the equivalence ofa) and ) clearly follows.]

Proposition 9 In the marketM the following properties are equivalent:

(i) there exists a strong asymptotic arbitrage (of the first and/or the second
kind);

(i) Ut =0 P-a.s.
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Proof. (ii) = (i) For any finiteN

IimnsuinQén P"(ht(Q,P™ > N) = IimnsupP”(h$” >N)=1
By Theorem 51§) we have P“)A(@n) and the assertion holds due to Proposition

4,
(i) = (i) If there is SAAL thenP") A (6”) and by Theorem 54

lim limsuplimsup inf P"(hy(a, Q,P") > 1) = 1.
nd0 al0 n Qegrn

But for anyn >0

inf P"(hr(a, Q,P") > 1) =P"(hr(a,Q",P") > 1)
Qegn

and
lim sup lim supP"(hy(a, Q", P™) > 1) = P(Ut = c0).
al0 n
Thus, SAA1 implies thaP (Ut = 00) =1. O
Notice that in the case of deterministic coefficients (whlgnis deterministic)
there is the alternative: either the market has the property NAA1 or there exists

a strong asymptotic arbitrage. Moreover, the properties NAA1 and NAA2 hold
simultaneously.

Remark.n the particular case of constant coefficients and fifit¢ghe condition
(b) of Proposition 8 can be written as

> (1o by’ <o v

i=1 i

In the case where & ¢ < ¢i7; < C the property NAA1 holds iff
> (i = Bipo)? < oo. (12)
i=1

This assertion has the same form as the famous result in the Ross arbitrage asset
pricing theory, see [20]. Qualitatively, in the large financial market with absence
of arbitrage the parameterg;(5;) lay close to the security market line= 04.
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6. Example: one-stage APM by Ross

Let (¢)i>o0 be a sequence of independent random variables given on a probability
space (2,.7 , P) and taking values in a finite intervatN,N], E¢; = 0,Ee? = 1.

At time zero asset prices are positive numbéjsAfter a certain period (at time

T = 1) their discounted values are given by the following relations:

Xp

] X§(L + pio + oo€o),
X! (13)

XS +pi +oi(vieo+ 7)), i€N.

The coefficients here are deterministig, > 0, 4i > 0 and~? + 42 = 1. The
asset with number zero is interpreted as a market portfelits the correlation
coefficient between the rate of return for the market portfolio and the rate of
return for the asset with number

Forn > 0 we consider the stochastic baBi$ = (£2,.7 ", F" = (7 ")ic(0,1},
P™) with the (1 + 1) -dimensional random proceS§§ = (X°, X1, ...  XMieqo,1y
where.7;," is the trivial o-algebra, 7" =.7" ;= o{¢y, ...,en}, andP" = P|.7 ",
The sequenc®! = {(B",S", 1)} is a large security market by our definition.

Let 8, := ymon /oo and define

) iy

n
bo::—@...,bn::w, n>1, DZ =) b2
g0 OnIn —

It is convenient to rewrite (13) as follows:

XP X3(1 +oo(eo — bo)),
Xi Xe(L+ai7i(eo — o) + oivi (e — b)), i €N.

The set" of equivalent martingale measures has a very simple description:
Qe"iff Q~P"and

EQ(Ei—bi):O, 0§|§n7

i.e. theb; are mean values ef underQ. Obviously,Zo" # 0 iff P(¢; —b; > 0) >
0 andP(¢; — by < 0) > 0 for all i < n. The last conditions has the following
equivalent form: there are functiomis: [-N,N] —]0, oo, i < n, such that

E(e —bi)fi(e —bi)=0.

As usual, we shall assume that" # () for all n; this implies, in particular, that
|bi| < N. Without loss of generality we suppose ti\t> 1.
Let F; be the distribution function of;. Put

s =inf{t: Fi(t) >0}, s§:=inf{t: F(t)=1},

d :=b —s, 0 :=§ — b, andd; := d; Ad;. In other wordsg; is the distance
from b; to the end points of the intervas[ S ].
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Proposition 10 The following assertions hold:
@ infid =0 & SAA = (PM)A@QY,
(b)infid >0 < NAAL < (PM<(@Q),
(c)limsup |bi| =0 & NAA2 & (Q") < (P").

~ Notice that in the proof we can always assume without loss of generality that
b' = 0 fori < n wheren is arbitrarily large. Indeed, we can always take as
reference probability the measuPe~ P with P :=fo(eo — bp)...fn(en — bn)P.

Remark.The hypothesis that the distributions @fhave finite support is impor-
tant: it excludes the case when the value of every nontrivial portfolio is negative
with positive probability.

Proof. We shall consider here the first parts of each assertion and give direct
proofs; the second parts follow from the general theory and we included them
in the above formulation only for the reader convenience. Let us start from the
simple but important observation: there is a constant 0 such that; < —C
ands < C (in fact, one can tak€ = 1/(8N?)). Indeed, if, e.g.5 < 1/(8N?)
then the conditiorEe¢; = 0 implies thatF(—1/2) — F(~N) < 1/(4N?) and,
hence,Ee? < 1/4 +1/4 < 1 in contradiction with the assumption.

In the (one-step) model with number, a trading strategy is an initial en-
dowmentx and a vectorp € R, The value of the corresponding portfolio at
T =1 is given by the formula

n
VI =X+ ai (X — X).
If we define n =

2= Y @iXoin, & =@giXoiv, 1<i<n,
i=0
the expression fo¥" can be rewritten in the following more transparent form:

n
V9 =X+ ae —by).
i=0

Since ¢ can be reconstructed from we shall identify any pairxX, a) with a
trading strategy.

Let inf d; = 0. Taking a subsequence we can assume thaK 2.
Then SAAL is realized by the trading strategies corresponding to the sequence
(x*",a®") where x™ := 27", @™ = lj 5y — lragizny, 0 <0<,
I:={i: d <d;}. Indeed,

2n

V=274 Y e — ) =

i=n+1

2n 2n

=Y (E-er+(a—s)p)+2" =Y (dip+diz) >

i=n+1 i=n+1
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2n
> (E—e)lr+(a—s)p).

i=n+1
The right-hand side of this inequality is non-negative and, moreover, is greater
than or equal to

1 2n .
n c+ﬁi;1(—1) a6 l.

But by the strong law of large numbers this sequence (and héAtetends to
infinity with probability one.

Now let inf di = > 0. From the definitions it follows that for any > 0
with strictly positive probability

n n n
Doale—b) <= lald+n<—6> [al+n.
i=0 i=0 i=0
Thus, ifx" > 0 then the condition
n
V= X"+ Z a'(e —b)>0 as.
i=0
implies the bound
n
5y [l < x"
i=0
and forx" — 0 we have
n
V<X 2N ) [l < XML+ NG - 0.
i=0

This means that asymptotic arbitrage opportunities of the first kind cannot exist.
Notice that the inverse implications im)(and @) follow from the two im-
plications proved above.
Suppose that limsygb;| > 0. Without loss of generality we may assume
thatv :=inf; |bj| > 0. Then an asymptotic arbitrage opportunity can be realized
by the sequencex(, a") wherex" := v2/N2 and

an = Vb D2 := zn:bz
H Bl ﬁ’ n Bl | .
N*Ds i=0
Indeed,
I/2 n 1/2
Vi = NZ +> al(a —bi) = NZ2D2Z > b
i=0

SinceD?2 > Cn the strong law of large numbers implies that — 0 a.s. when
n — oo. Taking into account that < N and
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n n

ND32
D b <N D b < V”
i=0 i=0

we check easily the boundy"| < 1.

At last, suppose that lim syfi; | = 0. This implies that lim sy > C and,
hence, :=inf; |di| > 0. Fix a numbery €]0, 1[. Without loss of generality we
can assume that

¥d
2(1—7)

Let (x",a") be a sequence such that the first two properties of a strategy realizing
AA2 are fulfilled, i.e.x" — x > 0 and

suplb;| <
i

n
V=X Cal(q —b) < 1

i=0
It follows that .
x"+6) [l < 1.

i=0
Assume thak > ~. Then for sufficiently largen

n

1-—
> lan < =

i=0

and, therefore,
n n n
VI >y =) @b+ ) ale = v/2+ ) ale.
i=0 i=0 i=0

For sufficiently largen
P(V]' > 7/4) > E(V' —7/4)" N1 2 E(V] — /A A1 =E(V] —7/4) = v/4

Thus, there are no asymptotic arbitrage opportunities of the second kind if
lim, x" > ~. Since~ is arbitrary the property NAA2 holds[]

Remark.If the ¢ivi's are bounded away from zero we have again that for a
market without asymptotic arbitrage ~ 1o .

7. Example: two-asset model with infinite horizon

We consider here the discrete-time model with only two assets, one of which is
taken as a nugraire and its price is constant over time. The price dynamics of
the second asset is given by the following relation:

Xi =Xi_1(1+p +oiq), i >1, (14)
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where Xy, > 0, (¢)i>1 is a sequence of independent random variables on a
probability spacef,.7 , P) and taking values in a finite intervatN,N], E¢ =
0, Eei2 = 1. The coefficients here are deterministi¢,> O for all i.

Forn > 1 we consider the stochastic baBis= (£2,. 7", F" = (Z ")i<n, P")
with the 1-dimensional random proceS8 = (X)i<n Where. 7" = .% is the
trivial o-algebra, 7" = .7 = o{ey,...,6}, and P" = P|.Z". The sequence
M = {(B",S",n)} is a large security market according to our definition. Let

n
b= DZ:=> b
i=1

Oi

Then
Xi=Xia[l+oi(a —b)], i>1

The set" of equivalent martingale measures has the following description:
Qe o"iff Q~P"and

Eq(ei — b ‘.%’7_1)20, 1<i<n.

Clearly, " # 0 iff P( — by > 0) > 0 andP(¢ — b < 0) > 0 for all
i < n. The last condition has the following equivalent form: there are functions
fi : [-N,N] —]0, <[, i < n, such that

E(e —bi)fi(e —bi)=0. (15)

As usual, we shall assume that" # ) for all n; this implies, in particular,
that|bi| < N. Without loss of generality we suppose tifat> 1.

Proposition 11 (a) If D2, < oo then(P") « (6") and (Q") < (P") (equivalently,
the properties NAA1 and NAA2 hold);
(b) if D2, = oo then(P") A (6") (equivalently, SAA holds).

In other words, we have the dichotomy: either simultaneOLB'I‘M@n) and
@Q@M<a(PM or (PM A @") (and PM A (Q")), wheneveDZ < oo or D2 = <.

Proof. (a) SinceP" = P|.Z7™", the condition P") < (6") is equivalent to the
condition ") < (Q") where P" := P|.7" and P is any probability measure
such that® ~ P. If P :=fo(eo — by)...fn(en — bn)P we get for our model a new
specification withb, = 0,i < n, andb;, = bi, i > n. By the assumptionty — O
and the above observation shows that one can suppose without loss of generality
that |bi| < ¢ wherec > 0 is arbitrarily small.

We show that if thgb;| are bounded by a certain sufficiently small constant
then for everyn and for everya €]0,1[ there exists a probability measure
R"(a) € " such that

sup H(e; Q,P") =H (o, R(@),P") (16)
Qecr

and
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H (c, R"(a), P") > e~ Cat-a); (17)

whereC is a constant which does not depend@m@andn.
It follows from (16) and (17) that

supH(e;Q,P) - 0asa—0o0ora—1
Qegn
and the assertiora} holds by virtue of Propositions 5 and 6.

To find R"(«) let us consider the following optimization problem (corre-
sponding to the case = 1):

J(f) = /fa(x) m(dx) — max (18)
/(x —b)f (x) m(dx) =0, (19)
/f(x) m(dx) = 1, (20)

f >0 m-as. (22)

where m(dx) is a probability measure on-N,N] with zero mean and unit
varianceb €] — N, N[.

The solution of (18)—(20) can be found with the help of the Kuhn—Tucker
theorem which asserts that it is also the solution of the problem

/[)\Of“(x) + A1(X — b)f (X) + Xof ()] m(dx) — max

with the constraint (21) whergy > 0 and not all)\; are equal to zero. Simple
considerations show thag is not equal to zero and we can assume #hat 1;

also Az # 0 andA;(x — b) + A, < 0. The functionf — f* + X\;(x — b)f + \f
attains its maximum at the poifit (x) = Co(1 +a*(x — b))/~ where specific
expressions fo€Cy anda* are not important. The relation (19) gives an equation
determininga* and we show in Lemma 2 that this equation has a solution at
least if |b| is small enough. The normalization const&gtis given by (20). The
functionf * defined in this way is the solution of (18)—(21) (it follows also from
(25)—(27)).

Lemma 2 There exists a constant & 0 such that for allaw €]0,1[ and b €
[—c, c] the equation

¥(a) := /(x —b)L+a(x —b)’ HYm@dx)=0 (22)

wheref = a/(a—1) has the unique roota= a; , € [—v,7],7~ ! := 4N(1+|4));
there is a constant C such that for all@[—~,~] and be [—c, C]

/ (1 +a(x — b))’m(dx) > e~Cv”. (23)
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Proof. We first consider the case when c]0,1/2]. Let g(x) := x(1 +x)%~1.
SinceS € [—1,0[ we have

g'(x) = (B = (L +x)"3(Bx +2) < —4/9

on [-1/2,1/2] and hencey(x) < x — (2/9)x? on this interval. The function
¥(a) is continuous and decreasing oA1/(4N), 1/(4N)]. From the last bound
it follows that if |b| < 1/(36N) then

PA/EN) > b+ o (1407 >0

/@) < b~ 22 (1+0) <0,

and the existence of the unique root is proved.
On the interval [-1/2,1/2] we have that@?/0x?)(1+x)? > 3(8 —1)(2/3),
which implies the bound

(1+x)° > 14 Gx+ 2505 — 1

It follows that for anya € [-1/(4N), 1/(4N)]

3
/ (1 +a(x +b))’ m(dx) > 1 +pba+ 2i7 BB —1)a?>1— (2) ab? > e~ Cieb’

where the last inequality holds with some sufficiently large constantvhen
b? < (2/3)3.

The casea €]1/2,1] is similar. There is a constard; > 0 such that
(1 +x)%73 > 2c, when 8 €] — oo, —1[ and x| < (|B] + 1)~%. Thus, ¢"(x) <
—2¢,(|8] + 1) andg(x) < x — c(|3| + 1)x? for suchx. From the last bound we
get that if|b| < c;/(4N) then

(=7) 2 ~b+ca(|5] + (L +b7) = ~b+ L (1+b7) > 0,

() < —b — (16| + (L +b7) = b — 2(1+b) <O,

and there is a root of on [—~,~].
For x| < (]3| + 1)~ we have for some constaot > 0 the bound

(1+%)° > 1+x+c3f(B8 — 1x°.

Hence for anya € [—, 7]
2 2
/ (1+a(x b))’ m(@) > 1 fha+ cyd(d — Da > 1 G0 > e"%ob
3

where the last inequality holds with some sufficiently large constnivhen
b2 < 2c3. The lemma is proved[]
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Now we show that the optimal point in (16) is the product of the solutions of
one-stage optimization problem (18)—(21) correspondirg to. ., b,. Assuming
that all |b;| are sufficiently small and applying Lemma 2 witl(dx) equal to the
distribution of ¢, we get that for somey € [—v,7]

E(s —b)(L+a(e — b))’ =0 (24)
or, equivalently,
E(L+a(a — b))’ =EQ+a(e —b))" (25)
The measur®"(a) given by the density

dR(c) _ 1 (L+a(e —b))°"
dP" H EL+a(q — b))+

belongs toZ",

-«
ny = e (OR@\ _ (T (b
H(a,R(a)P)—E( dPn) —(EE(lw(e.—b.))B) >

> exp{Ca(l —a)) b?} (26)
i=1

and (17) holds.
For anyQ € " we have, using the (inverse)dltler inequality, that

1/8
= oo H(1+a.(e. b)) > <E [T +a( b ))ﬁ> HY(@,Q.P") =
i=1
=H"(a,R"(a),PMHY*(a, Q,P"). (27)
Thus,H (o, Q,P") < H (o, R"(x), P") and (16) also holds.
(b) Let us consider an arbitrary sequence of meas@®g& ¢". For anyn the
process Ky, .7 )k<n with My := Z, 1 bi(e —by) is aQ"-martingale and

EgiM?2 = Z b2Eqn(ei — byi)? < 4N2D2.
i=1

For the set\" := {D_3/2Mn > 1} € .7 " we have by the Chebyshev inequality
that
Q"(A") < D *EqnM? < 4N?D;t - 0, n — .
But
n
— 4AN?D2
P"(A") =P" (- > b > (DF - D§/2)> < ﬁ —0, n— oo
i=1

Thus, P") A (Q") and by Proposition 7R") A (Q ). O
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