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1: Draw K7 on a torus with no edge crossings.

A quick calculation reveals that an embedding of K7 on the torus is a 2-cell embedding. At that point,
it is hard to go wrong if you start drawing C3 faces, although making all edges straight is slightly
harder. Note that the point marked A can be viewed as traveling through the horizontal borders and
then the vertical borders to move to the opposite corner. It can be redrawn to only use one border at
a time quite easily.
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2: Find a TK5 or a TK3,3 in the Petersen Graph.

Delete a, then suppress b, c, and d to get the minor. Reversing the suppression is subdivision, and this
yields P − a (where P is the Petersen graph). Clearly P −A ⊆ P . 1
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1See animation on Wikipedia: http://en.wikipedia.org/wiki/File:Kuratowski.gif

2

http://en.wikipedia.org/wiki/File:Kuratowski.gif


HW6 21-484 Graph Theory Name (andrewid) - X

3, Diestel 4.4: Show that every planar graph is a union of three forests.

If G is a planar graph, then every induced subgraph of G is planar (use embedding of G to get an
embedding of the subgraph). Planar graphs satisfy

m ≤ 3n− 6,

so the conditions of Theorem 2.4.3 are satisfied. This theorem implies that the edges of G can be
partitioned into three trees, and we can group any isolated vertices together with one of the three trees
to obtain three forests whose union makes the original graph.
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4, Diestel 4.23: A graph is called outerplanar if it has a drawing in which every vertex lies on the
boundary of the outer face. Show that a graph is outerplanar if and only if it contains neither K4 nor
K2,3 as a minor.

Consider a graph G and let G′ be formed from G by adding a new vertex v which is adjacent to all
other vertices.

Lemma 1: Let J ′ be a vertex transitive graph, let v ∈ J ′ and let J = J ′− u. J is a topological minor
of G if and only if J ′ is a topological minor of G′.
Proof: (⇒) Suppose H ⊆ G is a subdivision of J . Let H ′ be formed from H by adding a new vertex
v which is adjacent to the vertices of J (but not vertices added through subdivision). H ′ ⊆ G′, and H ′

is a subdivision of J ∗K1 (by performing all of the subdivisions in H), so J ∗K1 is a topological minor
of G′. J ′ is a topological minor of J ∗K1, so by transitivity of topological minors, J ′ is a topological
minor of G′.

(⇐) Suppose H ′ ⊆ G′ is a subdivision of J ′. We consider 3 cases:

• If v 6∈ H ′ then H ⊆ G, and so J is a topological minor of J ′ which is a topological minor of G,
and we finish by transitivity.

• If v ∈ H ′ was added during subdivision, then let the edge xy ∈ J ′ be the edge that was subdivided
to form v. Let H be a subdivision of J − x formed by the same subdivisions as in H ′ (except
in edges that no longer exist, and particularly xy). Since x 6∈ J − x, v 6∈ H, and so H ⊆ G.
Therefore, J − x is a topological minor of G.

• If v ∈ H ′ was not added during subdivision, the let H be a subdivision of J − v formed by the
same subdivisions as in H ′ (except the edges that went to v). Since v 6∈ H, H ⊆ G, and since H
is a subdivision of J − v, J − v is a topological minor of G. �

Lemma 2: G has a K4 or K3,2 minor if and only if G′ has a K5 or K3,3 minor.
Proof: By Lemma 1, G has a K4 topological minor if and only if G′ has a K5 topological minor, and
G has a K3,2 topological minor if and only if G′ has a K3,3 topological minor. Adding Proposition
1.7.4 and Lemma 4.4.2 we finish the lemma. �

By Lemma 2, G has one of the forbidden minors if and only if G′ has one of K5 and K3,3 as a minor.
Adding Kuratowski’s theorem, we have that G has neither of the minors if and only if G′ is planar.
If G′ is planar, we take an embedding of G′ and delete v, and then homeomorph the drawing on the
sphere so that the face that v was in is the outer face. This gives an outerplanar drawing of G which
witnesses the outerplanarity of G. In the other direction, G cannot be outerplanar if it has one of the
forbidden minors, because an embedding of G on the plane with all vertices on the outer face can be
transformed into a planar embedding of G′ by adding v in the outer face, and drawing an arc from v
to each vertex such that no arc intersects.
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5: Prove or disprove: Every planar bipartite graph has a vertex of degree at most 3.

In class we proved that 2-edge-connected bipartite graphs satisfy

m ≤ 2n− 4

by using Euler’s formula, and counting edges in two ways (recall that bipartite graphs have at least
4 edges per cycle). We argue that this holds even for graphs that are not 2-edge-connected so long
as they have order at least 3. First, we can apply the argument to each component of a disconnected
graph and combine the results. Second, if we count the edges that lie on two faces once for each face,
and count bridges (which are only on the frontier of a single face) twice for their face, we find that
each face still counts at least 4 edges and each edge is counted twice, with the exception of faces that
have no edges from a cycle on their frontier. This happens if and only if the graph is a forest, and we
know that forests satisfy the result except when there are fewer than 3 vertices.

Because (non-empty) forests on fewer than 3 vertices must have a vertex of degree at most 3, need to
only finish on the graphs where the inequality holds. We know that the average degree of a graph is
2m
n , and so the average degree of planar graphs is at most 4n−8

n which is strictly less than 4. Since
degrees are integers, there is a vertex of degree at most 3.
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6: Show that the complement of any planar graph with 11 or more vertices is not planar. (It has been
shown that the above statement is true when 11 is replaced by 9, and there are examples of planar
graphs with 8 vertices having planar complement.)

Let our planar graph have n vertices and m edges. We have (when n ≥ 3):

m ≤ 3n− 6.

The complement has n(n−1)
2 −m edges, so for the complement to be planar we would have

n(n− 1)

2
−m ≤ 3n− 6

or

m ≥ 1

2
n2 − 7

2
n + 6

Combining these two gives
n2 − 7n + 12 ≤ 6n− 12

n2 − 13n + 24 ≤ 0.

By the quadratic formula (okay, actually just Wolfram Alpha), this inequality only holds for n ∈ [3, 10]
(because n is an integer), finishing the proof. Note that n < 3 is in fact possible because our equation
did not cover that case.
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