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1, Diestel 3.5: Deduce the k = 2 case of Menger’s theorem (3.3.1) from Proposition 3.1.1.

Let G be 2-connected, and let A and B be 2-sets.

We handle some special cases (thus later in the induction if these occur then we are done, so we may
assume these do not occur): if A = B then A is a pair of disjoint A–B paths. If |A ∩ B| = 1 then let
A∩B = {v}. v is an A–B path, and G−v is connected (because G was 2-connected), so there remains
an A–B path in G− v, and this path together with v are two disjoint A–B paths.

Otherwise, there are four vertices in A ∪B: a1, a2, b1, b2. G is 2-connected, so by proposition 3.1.1, G
is a cycle or G is formed from a 2-connected graph H plus an H-path. We go by induction on this
structure of H:

Base Case: When G = C = v0v1v2 · · · vkv0 is a cycle, then let a1 = vi, a2 = vj , b1 = vx, b2 = by.
WLOG i < j < x < y or i < x < j < y, because i, j and x, y can be flipped, as well as A and B, and

we care only about order of appearance on a cycle. In the first case, viCv0
◦
vk Cvy and vjCvx are two

disjoint A–B paths, and in the second viCvx and vjCvy are.

Induction Step: Let the H-path be P . We go by cases

• If none of the vertices lie on the interior of P , then we delete P and find the paths by the
induction hypothesis.

• If one of A and one of B are in the interior of P (WLOG a1 and b1) then we take a1Pb1 as one
path, and find the other in H (because the remaining graph is connected).

• If two of A and none of B are on the interior of P , then we set A′ to be the endpoints of P , find
two disjoint A′–B paths on H, and extend them along P to a1 and a2 in the obvious way.

• Two of B and none of A is proved by the previous case WLOG.

• If one of A and none of B on the interior of P , then one endpoint of P is not in A, and we so we
take that and the other vertex of A to form A′. The induction hypothesis gives the A′–B paths
in H, and we extend on e path the the vertex on P .

• If two of A and one of B are on the interior of P , then WLOG b1 is in the interior of P , and
P contains vertices in the order b1, a1, a2 or a1, b1, a2. In either case we take b1Pa1 as one path,
find a path in H from b2 to the endpoint of P closer to a2 on P than a1, and extend that path
to a2.

• Two of B and one of A is proved by the previous case WLOG.

• If all four vertices lie on the interior of P , then the endpoints of P are connected in H, so we can
add a path between them to P to make a cycle. Then this case was proved by the base case.
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2, Diestel 3.17 (i): Find the error in the following ‘simple proof’ of Menger’s theorem (3.3.1). Let
X be an A–B separator of minimum size. Denote by GA the subgraph of G induced by X and all the
components of G − X that meet A, and define GB correspondingly. By the minimality of X, there
can be no A–X separator in GA with fewer than |X| vertices, so GA contains k disjoint A–X paths
by induction. Similarly, GB contains k disjoint X–B paths. Together, all these paths form the desired
A–B paths in G.

The problem is that GA might be equal to G. In this case, no matter what the induction is on (vertices,
edges, etc.), we cannot argue about GA using the induction hypothesis, because we did not modify it
from G. Formally: if the induction is on an arbitrary graph invariant, then this invariant does not
change because GA

∼= G, so assuming the IH for graphs with smaller values of the invariant does not
say anything about GA.

To prove that this can occur, consider when G = Kn, B is a set of one vertex and A is the other n− 1.
B is the unique minimum-size A–B separator, but with X = B, GA = Kn (because all vertices are in A
or B, so they either meet A or are in X. So, when Diestel says “by induction” he leaves unhandled the
cases where the only minimum A–B separators are ones whose deletions leave all components meeting
A. In fact, the same problem can occur with GB

∼= G.

2



HW5 21-484 Graph Theory SOLUTIONS (hbovik) - Q

3, Diestel 3.18: Prove Menger’s theorem by induction on ||G||, as follows. Given an edge e = xy,
consider a smallest A–B separator S in G− e. Show that the induction hypothesis implies a solution
for G unless S∪{x} and S∪{y} are smallest A–B separators in G. Then show that if choosing neither
of these separators as X in the previous exercise gives a valid proof, there is only one easy case left to
do.

Base Case: (||G|| = 0) is the same as in the original proof of Menger’s theorem. We observe the
minimum separator is X = A ∩ B, and A ∩ B is in fact the maximum size set of disjoint A–B paths
(all of which happen to be trivial).

Induction Step: Let S be a smallest separator of G− e and let |S| = k. If one of S ∪{x} and S ∪{y}
is not a smallest A–B separator in G, WLOG S ∪{x} is not, then we know S ∪{x} is a separator of G
(because the only A–B paths in G not in G− e are those that include e, and these paths go through
x; all other paths go through S by its definition). So the minimum size separator of G has size less
than |S ∪ {x} | = k + 1, meaning size at most k. It is also size at least |S| because any separator of G
is a separator of G− e, so we need to find k disjoint A–B paths in G. Such paths are given in G− e
by the IH, and those are paths in G as well.

In the case that both S ∪{x} and S ∪{y} are smallest separators, we observe that either none or both
of x and y are in S (as otherwise they are both smallest but with different sizes). If neither is in S,
then we show that one of S ∪{x} and S ∪{y}, WLOG S ∪{x} gives a ||GA|| < ||G|| and S ∪{y} gives
a ||GB|| < ||G|| (as defined in 3.15), which allows us to use the IH (because the new graphs in which
we find paths are strict subgraphs) to get k + 1 disjoint A–S ∪ {x} paths is GA and k + 1 disjoint
B–S ∪{y} paths in G. We can concatenate paths that have endpoints in S, and then for the A–x path
and the B–y path put e in between to form a new system of k + 1 disjoint A–B paths.

To argue that ||GA||, ||GB|| < ||G||, we consider G − S, which has an A–B path, P = a . . . b (with
a ∈ A) because S ∪ {x} is larger than S and is a minimum separator. Because S is a separator of
G − e, this A–B path must include e, and WLOG the path has x closer to A than y. Then since
S∪{x} is an A–B separator, and yPb does not intersect S∪{x}, all A–y paths must intersect S∪{x}.
Then, since y 6∈ S, and there are no A–y paths in G − S ∪ {x}, we conclude y 6∈ GA, and e 6∈ GA.
The symmetric argument gives x 6∈ GB and e 6∈ GB. Thus, the use of the IH was appropriate because
e 6∈ GA, GB ⇒ ||GA||, ||GB|| < ||G||.
Otherwise, x and y are both in S, so S is a smallest separator of G, and then we observe that the k
disjoint A–B paths in G− e, which are given by the IH, suffice.

In all cases, the other direction (that there are no more paths than the size of the minimum separator
of G) remains clear and need not use the IH.
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4, Diestel 3.21: Let k ≥ 2. Show that every k-connected graph of order at least 2k contains a cycle
of length at least 2k.

Let k ≥ 2 and let G be a k-connected graph with |G| ≥ 2k. As G is k-connected, it is connected, and
as δ(G) ≥ κ(G) ≥ k ≥ 2, it has no leaves, so it is not a tree, so it has a cycle.

Let C be a largest cycle in G. First, as δ(G) ≥ κ(G) ≥ k, and G has a cycle, |C| ≥ k + 1 by Diestel
Proposition 1.3.1. Assume for the sake of contradiction that |C| < 2k. Then there is v ∈ G \ C.
Let A = N(v) and B = V (C). As δ(G) ≥ κ(G) ≥ k, |A| ≥ k. Furthermore, any set X of size less
than k cannot separate A and B as that would disconnect v and some c ∈ C, contradicting that G is
k-connected. Thus the size of a minimum separator is at least k, and by Menger’s theorem, there are
at least k disjoint A–B paths.

By the pigeon-hole principle (with vertices in A as pigeons and edges in C as holes), there are a, a′ ∈ A
and c1, c2 ∈ C such that c1c2 ∈ E(G) there are distinct a–c1 and a′–c2 paths Pa and Pa′ . (Note that
these paths may be of length zero if a vertex of C is adjacent to v.) Let P be the c1–c2 path in C of
size at least two. Then

C ′ = vPa

◦
PPa′v

has size at least one larger than C, contradicting the maximality of C.

A
a

a′, c2

c1

v

C

We conclude |C| ≥ 2k.
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5, Diestel 3.22: Let k ≥ 2. Show that in a k-connected graph any k vertices lie on a common cycle.

Let k ≥ 2 and let G be k-connected. Let v1, . . . , vk be k arbitrary vertices in G. As δ(G) ≥ κ(G) ≥ k,
G does not contain any leaves, but it is connected, so it must contain a cycle. Let C be the cycle
containing the largest number of the k designated vertices and assume for the sake of contradiction that
it contains j < k of them. Without loss of generality, label those vertices v1, . . . , vj . Let A = N(vk)
and B = V (C). Consider two cases.

First, if |C| < 2k, then as in the solution to Diestel 3.18 above, we find C ′ containing v1, . . . , vj , vk,
contradicting the maxmimality of C.

Thus assume |C| ≥ 2k. Then partition C into j independent paths, each beginning with vi and ending
with the vertex before vi+1 (or v1 in the case we began at vj). As |A| ≥ k, and |B| ≥ k, any A–B
separator, S, has size at least k, because it either contains all of A or B or it leaves a vertex a ∈ A
disconnected from a vertex b ∈ B in G−S. In the latter case, |S| ≥ k because otherwise S contradicts
the k-connectedness of G.

By Menger’s theorem (3.3.1) there are at least k A–B paths, P1, . . . , Pk so by the pigeon-hole principle
there is a segment in which two paths terminate. Call those paths Pi and Pj . We can follow C until the
first of those paths (WLOG Pi), take Pi to vk (either adding the edge to vk at the end, or terminating
early if Pi intersects vk. Then we take the other path back to C (again either with the edge to a
neighbor and then Pj or starting on Pj at vk). Following the rest of C after this yields C ′ containing
v1, . . . vj and vk, contradicting the maxmimality of C.

Thus we conclude C must contain all k of the designated vertices.
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