MATH STUDIES ALGEBRA SPRING 2018: HOMEWORK 3

 \mathbf{JC}

This homework is due by class time on Monday 12 February. It must be typeset (preferably in LATEX) and submitted as a PDF file on the Canvas site, with a filename of the form

andrewID_alg_homeworknumber.pdf

For each minute that it is late, the grade will be reduced by 10 percent.

- (1) Let V be a VS over a field k. Prove that:
 - (a) A subset X of V is a basis of V if and only if it is a *minimal spanning* set, that is to say X is spanning but every proper subset $Y \subsetneq X$ fails to be spanning.
 - (b) If X is spanning and Y is a maximal element in the poset of independent subsets of X (ordered by inclusion) then Y is a basis.
 - (c) If X is independent and Y is spanning then $|X| \leq |Y|$.
- (2) Prove that if W is a VS over k and V is a subspace of W then for any basis B of V there is a basis C of W with $B \subseteq C$. Prove further that in this case the set $\{c + V : c \in C \setminus B\}$ is a basis for the quotient space W/V. Use this to deduce that $\dim(W) = \dim(V) + \dim(W/V)$.
- (3) Let $0 \to V_0 \to \ldots \to V_n \to 0$ be an exact sequence of VS's over a field k (so the maps from V_i to V_{i+1} are linear for i < n). Assume that dim (V_i) is finite for each *i*. Prove that $\sum_{i=0}^{n} (-1)^i \dim(V_i) = 0.$ (4) Let $f : \mathbb{R} \to \mathbb{R}$ be such that f(x+y) = f(x) + f(y) and f(1) = 1.
 - - (a) Prove that f(q) = q for all rational q.
 - (b) Prove that if f is continuous then f is the identity function.
 - (c) Show that there exists an f as above which is not the identity function. Hint: \mathbb{R} can be viewed as a VS over \mathbb{Q} .
- (5) Let P be a nonempty set of prime numbers. Let S be a set of integers such that for each $k \in S$, k > 1 and only primes in P appear in the prime factorisation of k. Prove that if |S| > |P| then there is a nonempty subset S' of S such that the product of the elements of S is a perfect square. Hint: Make it into a problem about linear independence in the k-VS $k^{|P|}$ where $k = \mathbb{Z}/2\mathbb{Z}.$