
SKETCHY NOTES FOR WEEKS 9 AND 10, PART TWO

1. Examples with graphs

The language of graph theory has equality and one binary relation symbol E
(edge). The axioms of graph theory say that ∀x ¬xEx and ∀x ∀y (xEy =⇒ yEx),
call the theory with these two sentences Tg. We usually think of a graph as a
pair G = (VG, EG) where EG is a set of unordered pairs from VG. Element of VG
are vertices, elements of EG are edges. Some simple properties of graphs can be
expressed by sentences, for example “every vertex has three neighbours”.

A graph is connected if for any two distinct vertices v, w there is a sequence
v0 = v, . . . vn = w such that viEvi+1 for all i < n. This property can’t be expressed
in FOL, even if we expand the langauge and allow infinitely many sentences. Intu-
itively, this is because we would need an infinite disjunction of increasingly compli-
cated formulae.

Theorem 1. There is no expansion of the language of graphs and no theory T in
this expansion such that the set of reducts to the language of graph theory of models
of T is exactly the set of connected graphs.

Proof. Consider the expansion of the langauge of T by two new constants c and
d, and let φn express “there is no chain of edges of length n which joins c to d”.
We claim the theory T ∪ {φn : n > 0} has a model, for which (Compactness) it’s
enough to show that T ∪ {φn : 0 < n < N} has a model for all N .

Let G be a “linear” graph with N edges. G is connected so we can take an
expansion to the langauge of T and get a model of T , then we can expand further
by interpreting c and d as the endpoints and get a model of T ∪ {φn : 0 < n < N}.

Now take a model of T ∪ {φn : n > 0}. Its reduct to the language of graphs is
not a connected graph because the interpretations of c and d can’t be joined. �

An n-cycle in a graph is a sequence v1, . . . vn of distinct vertices such that vi and
vi+1 are joined by an edge, for i < n, as are vn and v1. A graph is acyclic if it has
no n-cycles for n ≥ 3. Clearly we can find an infinite theory Ta in the language
of graphs whose models are the acyclic graphs: Ta is the union of Tg and the set
{ψn : n ≥ 3} where ψn expresses “there is no n-cycle”.

Theorem 2. There is no expansion of the language of graphs and no finite theory
T in this expansion such that the set of reducts to the language of graph theory of
models of T is exactly the set of acyclic graphs.

Proof. Clearly Ta |= T , so there is some N such that Tg ∪ {ψn : 3 ≤ n ≤ N} |= T .
Now take an (N + 1)-cycle, this is a model of the LHS and if we expand it to the
language of T we get a model of the RHS, contradiction. �

A k-colouring of a graph G is a function f : VG → {1, . . . k} such that f(v) =
f(w) =⇒ ¬vEw for all v, w. We can express the property of being k-colourable by
expanding the language with k unary predicates and writing down a long sentence
ψk: ψk says that every element satisfies exactly one Ri, and that for each i there do
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not exist neighbouring elements satisfying Ri. The k-colourable graphs are exactly
the models of Tg ∪ {ψk}.

If W ⊆ VG, the induced subgraph of G induced by W is (W,E ∩ [W ]2).

Theorem 3. A graph is k-colourable if and only if every finite induced subgraph is
k-colourable.

Proof. Consider the theory which is the union of the atomic diagram of G and
Tg∪{ψk}. Every finite subset is consistent, so the whole theory is consistent. From
a model of the whole theory (which is graph containing an isomorphic copy of G,
and having a k-colouring) we read off a k-colouring of G. �

2. Dense linear orderings without endpoints

The language of linear orderings has a relation symbol ≤. A linear ordering is
dense if x < y implies there is z with x < z < y. DLOWE is the (finite) theory
whose models are dense linear orderings with no greatest or least point.

Note that Q with the usual ordering is a countable DLOWE.

Theorem 4. Any two countable DLOWE’s are isomorphic.

Proof. Let X and Y be such orderings. We build an isomorphism by the “back and
forth” method. Enumerate the sets X and Y without repetitions as x0, x1, . . . and
y0, y1, . . ..

We will build a sequence of functions g1, g2 . . . such that gi is an order-preserving
bijection between a set of i elements in X and a set of i elements in Y . We will
make sure that gi+1 � dom(gi) = gi. Start by defining g1(x0) = y0.

If we defined gi then:

• If i is odd, find the least m such that xm /∈ dom(gi), then the least n such
that yn /∈ rge(gi), and setting dom(gi+1) = dom(gi) ∪ {xm} while defining
gi+1(xm) = yn gives an order-preserving map. This is possible because Y
is a DLOWE. This defines gi+1.
• If i is even, find the least n such that yn /∈ rge(gi), then the least m such

that xm /∈ dom(gi) and setting dom(gi+1) = dom(gi)∪{xm} while defining
gi+1(xm) = yn gives an order-preserving map. This is possible because X
is a DLOWE. This defines gi+1.

Taking the union of the gi’s gives a function g : X → Y . It is clearly an order-
preserving bijection between some subset of X and some subset of Y . To finish we
show that dom(g) = X and rge(g) = Y .

If dom(g) 6= X then let m be least such that xm /∈ dom(g). Since m is least, find
i which is odd and so large that {xr : r < m} ⊆ dom(gi). At stage i we would add
xm to the domain, contradiction. Similarly rge(g) = Y .

�

Since all countable DLOWE’s are isomorphic to Q, we can focus on Q.
For any structureM, an automorphism of M is an isomorphism fromM toM.

Think of this as a symmetry of M.

Theorem 5. If ai and bi are rationals with a1 < . . . < an and b1 < . . . < bn, then
there is an automorphism g of Q such that g(ai) = bi for all i.

Proof. Build the automorphism in stages as in the last proof, but start with dom(g0) =
{a1, . . . an} and g0(ai) = bi. �


