SKETCHY NOTES FOR WEEKS 9 AND 10, PART TWO

1. EXAMPLES WITH GRAPHS

The language of graph theory has equality and one binary relation symbol E
(edge). The axioms of graph theory say that Vo ~zEz and Va Vy (tEy = yFzx),
call the theory with these two sentences T;. We usually think of a graph as a
pair G = (Vg, Eg) where Eg is a set of unordered pairs from V. Element of Vg
are vertices, elements of F¢g are edges. Some simple properties of graphs can be
expressed by sentences, for example “every vertex has three neighbours”.

A graph is connected if for any two distinct vertices v, w there is a sequence
vg = v,...v, = w such that v; Fv;;1 for all ¢ < n. This property can’t be expressed
in FOL, even if we expand the langauge and allow infinitely many sentences. Intu-
itively, this is because we would need an infinite disjunction of increasingly compli-
cated formulae.

Theorem 1. There is no expansion of the language of graphs and no theory T in
this expansion such that the set of reducts to the language of graph theory of models
of T is exactly the set of connected graphs.

Proof. Consider the expansion of the langauge of T' by two new constants ¢ and
d, and let ¢,, express “there is no chain of edges of length n which joins ¢ to d”.
We claim the theory T'U {¢, : n > 0} has a model, for which (Compactness) it’s
enough to show that TU {¢, : 0 < n < N} has a model for all N.

Let G be a “linear” graph with N edges. G is connected so we can take an
expansion to the langauge of T and get a model of T', then we can expand further
by interpreting ¢ and d as the endpoints and get a model of T U {¢, : 0 <n < N}.

Now take a model of T'U {¢,, : n > 0}. Its reduct to the language of graphs is
not a connected graph because the interpretations of ¢ and d can’t be joined. [

An n-cycle in a graph is a sequence vy, . .. v, of distinct vertices such that v; and
v;+1 are joined by an edge, for ¢ < n, as are v,, and v;. A graph is acyclic if it has
no n-cycles for n > 3. Clearly we can find an infinite theory T, in the language
of graphs whose models are the acyclic graphs: T is the union of Ty and the set
{1y, : n > 3} where v,, expresses “there is no n-cycle”.

Theorem 2. There is no expansion of the language of graphs and no finite theory
T in this expansion such that the set of reducts to the language of graph theory of
models of T is exactly the set of acyclic graphs.

Proof. Clearly T, =T, so there is some N such that T, U{¢, :3<n <N} ET.
Now take an (N + 1)-cycle, this is a model of the LHS and if we expand it to the
language of T' we get a model of the RHS, contradiction. (]

A k-colouring of a graph G is a function f : Vo — {1,...k} such that f(v) =
f(w) = —wEw for all v,w. We can express the property of being k-colourable by
expanding the language with k£ unary predicates and writing down a long sentence
Ui Py says that every element satisfies exactly one R;, and that for each i there do
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not exist neighbouring elements satisfying R;. The k-colourable graphs are exactly
the models of Ty U {4 }.
If W C Vg, the induced subgraph of G induced by W is (W, E N [W]?).

Theorem 3. A graph is k-colourable if and only if every finite induced subgraph is
k-colourable.

Proof. Consider the theory which is the union of the atomic diagram of G and
Ty U{¢r}. Every finite subset is consistent, so the whole theory is consistent. From
a model of the whole theory (which is graph containing an isomorphic copy of G,
and having a k-colouring) we read off a k-colouring of G. O

2. DENSE LINEAR ORDERINGS WITHOUT ENDPOINTS

The language of linear orderings has a relation symbol <. A linear ordering is
dense if < y implies there is z with z < z < y. DLOWE is the (finite) theory
whose models are dense linear orderings with no greatest or least point.

Note that Q with the usual ordering is a countable DLOWE.

Theorem 4. Any two countable DLOWE’s are isomorphic.

Proof. Let X and Y be such orderings. We build an isomorphism by the “back and
forth” method. Enumerate the sets X and Y without repetitions as zg, z1,... and
Yo, Y1, - - -

We will build a sequence of functions g1, go . . . such that g; is an order-preserving
bijection between a set of i elements in X and a set of i elements in Y. We will
make sure that g;11 | dom(g;) = g;. Start by defining g1 (xo) = yo.

If we defined g; then:

e If i is odd, find the least m such that xz,, ¢ dom(g;), then the least n such
that y, ¢ rge(g;), and setting dom(g;+1) = dom(g;) U {x,,} while defining
gi+1(Tm) = yn gives an order-preserving map. This is possible because Y
is a DLOWE. This defines g;1.

e If 7 is even, find the least n such that y, ¢ rge(g;), then the least m such
that x,, ¢ dom(g;) and setting dom(g;4+1) = dom(g;) U{,, } while defining
gi+1(Tm) = yn gives an order-preserving map. This is possible because X
is a DLOWE. This defines g;41.

Taking the union of the g;’s gives a function g : X — Y. It is clearly an order-
preserving bijection between some subset of X and some subset of Y. To finish we
show that dom(g) = X and rge(g) =Y.

If dom(g) # X then let m be least such that z,, ¢ dom(g). Since m is least, find
i which is odd and so large that {z, : ¥ <m} C dom(g;). At stage ¢ we would add
Zm to the domain, contradiction. Similarly rge(g) =Y.

O

Since all countable DLOWE’s are isomorphic to QQ, we can focus on Q.
For any structure M, an automorphism of M is an isomorphism from M to M.
Think of this as a symmetry of M.

Theorem 5. If a; and b; are rationals with a1 < ... < a, and by < ... < b, then
there is an automorphism g of Q such that g(a;) = b; for all i.

Proof. Build the automorphism in stages as in the last proof, but start with dom(gg)
{a1,...an} and go(a;) = b;. ]



