
SKETCHY NOTES FOR WEEKS 9 AND 10, PART ONE

1. Completeness with equality

So far we did completeness for first order logic without equality. Now we do it
for FOL with equality. Many details are the same as before so we focus on the
new ideas. Keep in mind that in the setting with FOL with equality the notion of
structure is different (we must interpret ≡ as equality) and the notion of proof is
different (we have the equality rules).

Starting with a consistent theory T , we can expand it as before to a Henkinised
theory in a larger language. So our task is to construct, given a Henkinised T , a
structure M such that M |= T .

We use our previous version of completeness to construct N which is a structure
(in the old sense) for the language of T , such that N |= φ if and only if φ ∈ T .
Recall that the underlying set N for N is the set of closed terms. The snag is that
N may not interpret ≡ as equality.

We define a relation ∼ on N as follows: σ ∼ τ if and only if σ ≡ τ ∈ T .
The rules for equality tell us that ∼ is an equivalence relation on N , for example
{σ ≡ τ, τ ≡ ρ} ` σ ≡ ρ and this is exactly what we need to prove that ∼ is
transitive.

Let M be the set of equivalence classes, and write [σ] for the class of σ. We will
define a structure M with underlying set M , but we have to be slightly careful.

Constant symbols are easy, just define cM = [cN ]. For an n-ary relation symbol
R we would like to define that RM([τ1], . . . [τn]) if and only if RN (τ1, . . . τn), but for
this to make sense it is necessary that if τi ∼ τ ′i for each i then RM(τ1, . . . τn) ⇐⇒
RM(τ ′1, . . . τ

′
n). This is guaranteed by one of the proof rules for equality. In a

similar vein we define fM([τ1], . . . [τn]) = [f(τ1, . . . τn)].
Remark: by the definition of ∼, ≡ now interprets as equality, so that M is a

structure (in the new sense) for the language of T .
We now verify by induction that for every sentence φ, φ ∈ T if and only if

M |= φ. First we show by a routine induction that for every closed term τ ,
τM = [τ ]. Then we verify the main claim for atomic sentences φ, that is sentences
of the form R(τ1, . . . τn): this is easy, R(τ1, . . . τn) ∈ T if and only if RN (τ1, . . . τn)
(by construction of N ) if and only if RM([τ1], . . . [τn]) (by construction of M) if
and only if M |= R(τ1, . . . τn) (since τMi = [τi]).

The rest of the proof is exactly as before.
CONVENTION: FROM THIS POINT ON WE WORK ONLY WITH FOL

WITH EQUALITY, UNLESS OTHERWISE SPECIFIED.

2. Reducts and expansions

Definition 1. Let L0 and L1 be languages with L0 ⊆ L1. Let M be a structure
for the language L1. Then the reduct of M to the language L0 is the structure for
L0 obtained as follows: the underlying set of the reduct is the underlying set M of
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the structure M, and every symbol of L0 has the same interpretation in the reduct
as it has in the structure M.

Intuitively we build a reduct by “forgetting” the interpretations of certain sym-
bols. If M is a reduct of some structure M+ we say that M+ is an expansion of
M.

The following result is essentially obvious. The proof is by induction on the
formulae of L0.

Theorem 1. Let Γ be a set of sentences of L1 and let M be a structure for L1.
Let M∗ be the reduct of M to L0. If M |= Γ then M∗ |= Γ∗ where Γ∗ is the
intersection of Γ with the sentences of L0.

The next result is even easier.

Theorem 2. If L0 ⊆ L1 and M is a structure for L0, then there is a structure N
for L1 whose reduct to L0 is M.

Formally speaking when we proved completness we were actually using these
ideas. We started with a consistent theory T , found a Henkinised theory T ′ ⊇ T in
a larger language and built a structure for that larger language which is a model
of T ′. So we should have taken a reduct to get a structure for the language of T
which is a model of T .

3. Easy consequences of completeness

The next result shows that we can stop being careful about which language we
are working in, using Completeness.

Theorem 3. Let Γ be a set of sentences in L, let φ be a sentence in L. Suppose
that Γ proves φ in the proof system for L′ where L ⊆ L′. Then Γ proves φ in the
proof system for L.

Proof. We claim that Γ entails φ. To see this let M be an arbitrary structure for
L which models Γ, and letM′ be any structure for L′ whose reduct to L isM. By
Soundness M′ |= φ, and since φ is a sentence in L we also have M |= φ.

Since Γ entails φ, it follows from Completeness that there is a proof of φ from Γ
in the L proof system. �

In particular the notion of “consistency” is rather robust, in a sense made precise
by the following easy corollary of the preceding one.

Theorem 4. Let Γ be a set of sentences in L, and let L ⊆ L′. Γ is consistent in
the proof system for L if and only if Γ is consistent in the proof system for L′.

The following fact has some strange consequences (the “Skolem paradox”) which
we may have time to explore later.

Theorem 5. Let Γ be a consistent set of sentences in a countable first order lan-
guage LV . Then Γ has a countable model (that is to say a model which has a
countable underlying set).

Proof. We can expand to a Henkinised theory in a countable language and then
build a model out of closed terms. There are onlycountably many such terms. �
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The Compactness theorem is proved just as in the case of propositional logic. As
we see later, the fact that the expressive power of first order logic is greater than
that of propositional logic makes the Compactness theorem more interesting in the
case of first order logic.

Theorem 6 (Compactness). If Γ entails φ then some finite subset of Γ entails φ.

Proof. By Completeness and the fact that proofs are finite. �

4. Elementary embeddings, elementary equivalence

The next definition is a generalisation of an important idea in algebra.

Definition 2. LetM and N be two structures for the same language L. A function
f is an isomorphism from M to N (f : M ' N) if and only if

(1) f is a bijection from M to N .
(2) f(cM) = cN for every constant symbol c of V .
(3) f(gM(a1, . . . ak)) = gN (f(a1), . . . f(ak)) for every function symbol g of V

and a1, . . . ak ∈M .
(4) RM(a1, . . . ak) ⇐⇒ RN (f(a1), . . . f(ak)) for every relation symbol R of V

and a1, . . . ak ∈M .

We say that M and N are isomorphic and write M ' N when there exists an
isomorphism from M to N .

The following result is easy.

Theorem 7. Let φ(x1, . . . xk) be a formula of L, and let f be an isomorphism from
M to N . Then for any a1, . . . ak ∈M ,

M |= φ(a1, . . . ak) ⇐⇒ N |= φ(f(a1), . . . f(ak).

Corollary 1. IfM and N are isomorphic then for every sentence φ, M |= φ ⇐⇒
N |= φ.

Definition 3. Two structures M and N are elementarily equivalent (in the lan-
guage L) if and only if for every sentence φ of L, M |= φ ⇐⇒ N |= φ.

We write M≡ N for the relation of elementary equivalence.
We have seen that if M ' N , then M ≡ N . The converse is false in general

(see an example in the next section).
We can use compactness to get interesting examples of elementary embeddings.

To do this we associate various theories to an L-structure M.

(1) The theory of M is the set of sentences φ of L such that M |= φ.
(2) The complete diagram of M is the set of sentences φ of the expanded

language for M such that M |= φ.
(3) The atomic diagram ofM is the set of atomic sentences φ of the expanded

language for M such that M |= φ.

Theorem 8. If M is an infinite structure for L then there is an elementary em-
bedding f from M into some N where N 6= rge(f).

Proof. Let c be a new constant and let T ∗ be the union of the complete diagram
of M and the set of sentences ¬c ≡ cm for m ∈ M . Since M is infinite, T ∗ is
consistent. Let N be a model of T ∗ and define f(m) = cNm for all m. �



4 SKETCHY NOTES FOR WEEKS 9 AND 10, PART ONE

5. A “non standard” integer

Let L be a language with constant symbols 0 and 1, binary function symbols +
and ×, and binary relation symbols ≡ and ≤. We consider N as a structure for L
in the natural way

Let TA (True Arithmetic) be the complete diagram of N. Let c be a constant
symbol not used in V and let

T ∗ = TA ∪ {c > 1, c > 1 + 1, c > 1 + 1 + 1, . . .}
T ∗ is consistent. Since T ∗ is a theory in a countable language, it follows by our

remarks after the proof of Completeness that T ∗ has a countable model. Let N∗ be
a model of T ∗. Arguing as in the last section the map f : n 7→ cN

∗

n is an elementary
embedding from N to N∗.

We claim that N is not isomorphic to N∗. To see this let g be an isomorphism
and observe that by an easy induction g(n) = f(n) for all n, but the element cN

∗

is not in the range of f .


