
SKETCHY NOTES FOR WEEKS 7 AND 8

We are now ready to start work on the proof of the Completeness Theorem for
first order logic. Before we start a couple of remarks are in order

(1) When we studied propositional logic we assumed that we started with a
countable set {An : n ∈ N} of propositional letters, which implied that
the set of all propositional formulae was countable. Countability was not
used in most of our development of propositional logic, in fact we used it
just once, when we proved Completeness: it was used there to list all the
formulae of propositional logic as {φn : n ∈ N} so that we could deal with
them in the course of a certain recursive construction. It can be shown
(using a bit of set theory) that the whole theory of propositional logic
(including Completeness) goes through if we start off with a set {Ai : i ∈ I}
of propositional letters indexed by some uncountable set I.

When we defined first order logic we allowed the sets of constant, relation
and function symbols to be arbitrarily large. This assumption did not cause
us any problem so far, but again when we prove Completeness we will have
to assume that the set of symbols which appear in the language is countable.
This restriction can be removed using ideas from set theory just as in the
propositional case.

(2) As we remarked when we defined the notion of proof, the definition of
proof is done relative to a fixed first order language L. For example the
∀-elimination rule lets us draw the conclusion φ[x/t] from the hypothesis
∀x φ, and what use we can make of this rule depends on what terms t are
available.

This has not been problematic so far, but in the proof of Completeness
a key idea will be that we expand a language L to a larger language L′
which has more constant symbols: this means that the proof system for
L′ can build more proofs than the proof system for L. This raises a very
ugly possibility: if T is a theory (set of sentences) in L then maybe T looks
consistent in the L proof system but becomes inconsistent in the larger L′
proof system?

Actually this ugly possibility can not occur, but we will need the Com-
pleteness theorem to see this. So in the course of the proof of Completeness
we will be extremely punctilious when talking about proofs and consistency,
and will always specify which proof system we mean.

(3) The equality symbol presents some extra difficulties in the proof of Com-
pleteness. We will therefore prove two versions of Completeness. First we
do one without equality, then we build on that to do a proof for logic with
equality.

The following definition is the key one.

Definition 1. Let T be a set of sentences in a first order language L. T is Henk-
inised for L if and only if

(1) T is consistent in the proof system for L.
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(2) For every sentence φ of L, either φ or ¬φ is in T .
(3) For any formula φ of L, if ∃x φ ∈ T then there is a constant symbol c of L

such that φ[x/c] ∈ T .

The role of the constants in part 3 of this definition is to provide concrete wit-
nesses to the truth of existential statements. They are often called “Henkin con-
stants” or “Henkin witnesses”, after the logician Leon Henkin. On a historical note
the first proof of Completeness was given by Gödel using very different ideas: the
modern style of proof which we give is due to Henkin.

The rough outline of the proof of Completeness is this:

• Prove that consistent theories can be extended to Henkinised theories (in
a larger language).
• Prove that Henkinised theories have models (a model of T is a structure
M such that M |= T )
• Infer that consistent theories have models.
• Now argue as for propositional logic: If T 6` φ then T ∪ {¬φ} is consistent,

so it has a model, so M 6|= φ.

As an aid to building Henkinised sets we need some lemmas, of which most are
just trivial generalisations of results we have seen before.

Lemma 1. Let T be a set of sentences in L and let φ be a sentence in L. If T
does not prove φ in the proof system for L, then T ∪{¬φ} is consistent in the proof
system for L.

Lemma 2. Let T be a set of sentences in L and let φ be a sentence in LV . If T
does not prove ¬φ in the proof system for L, then T ∪{φ} is consistent in the proof
system for L.

Lemma 3. If T is Henkinised, it is deductively closed.

The following lemma is a bit harder.

Lemma 4. Let T be a set of sentences in L which is consistent in the proof system
for L. Let c be a constant symbol not appearing in L and let L′ be the language
obtained by adding c to the symbols of L. If ∃x φ ∈ T then T ∪{φ[x/c]} is consistent
in the proof system for L′.

Proof. Suppose for contradiction that T∪{φ[x/c]} is inconsistent. Using ¬-Introduction
we can build a proof P in the L′ system with hypotheses in T and conclusion
¬φ[x/c]. Let y be a variable symbol not equal to x and not appearing in P .

An easy induction shows that if P ∗ is the tree obtained by replacing each ap-
pearance of c in P by y, then P ∗ is a proof in the L system. Subtle point: The
result of replacing c by y in ¬φ[x/c] is ¬φ[x/y], so the conclusion of P ∗ is ¬φ[x/y].

Since y has no appearance in the hypotheses of P , we can do ∀-Introduction and
make a proof of ∀y ¬φ[x/y] in the L system with hypotheses in T . It is now easy
to see that T is inconsistent in the L system, contradiction! �

Now we prove the main technical result needed for Completeness. The proof is
not too long but has one or two subtle aspects (see remarks after the proof). By a
“countable langauge” we mean one which has a countable signature, which implies
there are countably many formulae.
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Theorem 1. Let L be a countable language. Let T be a set of sentences in L
which is consistent in the L proof system. Then there are a countable language L′
extending L and a set of sentences T ′ in L′ such that T ⊆ T ′ and Γ̄ is Henkinised
for L′.

Proof. We start by fixing a set {dn : n ∈ N} of constant symbols which are distinct
and do not appear in L. L′ is defined to be the language obtained from L by adding
the set {dn : n ∈ N} of constant symbols. We also define Lj to be the language
obtained from L by adding in the finite set {di : i < j} and note that L0 = L.

The set of formulae of L′ is countable, in particular the set of sentences of L′
is countable. We enumerate this set as {φj : j ∈ N}, in such a way that φj is a
formula of Lj for every j (THIS IS A KEY TECHNICAL POINT)

We will construct an increasing sequence

T0 ⊆ T1 . . .
such that

(1) T0 = T .
(2) Tj is a set of sentences in Lj and is consistent for the Lj proof system.
(3) For all j

(a) Either φj ∈ Tj+1 or ¬φj ∈ Tj+1.
(b) If φj ∈ Tj+1 and has the form ∃x ψ for some ψ, then ψ[x/dj ] ∈ Tj+1.

The construction is inductive, starting by setting T0 = T . Suppose that we have
constructed Tj . We first define an intermediate set Sj .

If Tj proves φj in the Lj proof system then we set Sj = Tj ∪ {φj}, otherwise we
set Sj = Tj ∪ {¬φj}. As we have seen, Sj is consistent in the Lj proof system.

Now if φj ∈ Sj and φj has the form ∃x ψ then we set Tj+1 = Sj ∪ {ψ[x/dj ]},
otherwise we set Tj+1 = Sj . Since the symbol dj does not appear in the vocabulary
Vj , it follows from previous results that Tj+1 is consistent in the proof system for
Lj+1.

Now we let T ′ =
⋃

n Tn and check that T ′ is Henkinised for L′.
(1) We start by checking that T ′ is consistent in the L′ proof system. Suppose

for a contradiction that this is not so and fix proofs P and Q in the L′ proof
system which have conclusions β and ¬β for some β, and hypotheses lying
in T ′.

Find n so large that all the hypotheses of P and Q appear in Tn, and that
all the formulae and cancelled formulae appearing in P and Q come from
Ln. Then P and Q are proofs in the proof system for Ln giving contra-
dictory conclusions, which is impossible since the construction guarantees
that Tn is consistent in the Ln proof system.

(2) Next we check that for every sentence φ of L′, either φ or ¬φ is in T ′. Fix
such a φ, and let φ = φj . By construction one of φj and ¬φj lies in Tj+1,
and since Tj+1 ⊆ T ′ we are done.

(3) Finally we check that if ∃x ψ ∈ T ′ then ψ[x/c] ∈ T ′ for some c. Let
∃x ψ = φj and assume that φj ∈ T ′. By construction we know that one of
the formulae φj and ¬φj is in Sj , and since T ′ is consistent it must be that
φj ∈ Sj . By construction ψ[x/dj ] ∈ Tj+1 and we are done.

�

Note that
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(1) We had to “catch our tails” in the sense that we had to construct a set
T ′ of sentences in the L′ which was Henkinised for L′. This is why it was
important to enumerate all sentences of L′ before starting to build T ′.

(2) It was key that φj only contained constant symbols di for i < j. This
helped guarantee that Sj only contains di for i < j, which made it possible
to use dj as the “new constant” serving as a Henkin witness for φj (in the
case when φj had the form ∃x ψ).

(3) It was also helpful that when φj had the form ∃x ψ we made sure to deal
with it at stage j in the construction. It would have been a nuisance if we
had to worry about handling φj at some later stage.

We will now prove that every Henkinised set of sentences is satisfied by some
structure: this is the remaining hard step in the proof of Completeness. Before
doing this we review the definition of the satisfaction relation M |= φ. It will be
helpful to view the definition of satisfaction as happening in two phases, each of
them inductive:

• In phase 1 we define M |= φ for sentences φ which contain no quantifiers.
The base case here is φ having the form R(t1, . . . tk) for a relation symbol
R and closed terms ti; the successor steps are given by the clauses for the
four propositional connectives. If we like to, we can view this definition as
proceeding by induction on the number of connectives appearing in φ.
• In phase 2 we define M |= φ for arbitrary sentences φ, by induction on

the number of quantifiers appearing in φ. The base case here is φ without
any quantifiers, where we use the definition from phase 1. After n steps in
the phase 2 construction we have defined M |= φ for φ having at most n
quantifiers.

The definition of M |= φ for φ with n+ 1 quantifiers again proceeds by
induction on the number of connectives appearing in φ. If φ has any of the
forms ¬ψ, ψ ∧ χ, ψ ∨ χ, ψ → χ then each of ψ and χ has at most n + 1
quantifiers and has fewer connectives than φ; so we have already defined
M |= ψ and M |= χ and can proceed.

If φ has the form Qx ψ where Q is a quantifier then all the formulae of
the form ψ[x/ca] for a ∈ M have exactly n quantifiers, so again we have
already defined M |= ψ[x/ca] and can proceed.

We are now ready to build a model of a Henkinised set of sentences.

Theorem 2. Let T be a set of sentences in L, where L has at least one constant
symbol. Let T be Henkinised for L. Then there exists a structure M for L such
that M |= Γ.

Proof. We let M be the set of all closed terms for the language L. Since there is
at least one constant symbol, M is not empty. We will build a structure M with
underlying set M ; note that this is potentially rather confusing since it blurs the
distinction between syntax and semantics.

To defineM we need to describe how the constant, function and relation symbols
of V are to be interpreted in M.

• cM = c for every constant synbol c.
• If f is a function symbol of arity k, then fM(t1, . . . tk) = f(t1, . . . tk) for

all t1, . . . tk ∈ M . NOTE: on the left hand side of this equation we have
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the function fM applied to the objects t1, . . . tk of the structure M , on the
right we have the closed term f(t1, . . . tk).
• If R is a relation symbol of arity k and t1, . . . tk ∈M then RM(t1, . . . tk) if

and only if R(t1, . . . tk) ∈ T . NOTE: this is actually very reasonable, since
we are trying to cook up a structure which believes all the sentences in T .

Lemma 5. For every closed term t of LV , tM = t.

Proof. The proof is an easy induction on the construction of closed terms. By
definition cM = c for all c, and for the induction step we have that

(f(t1, . . . tk))M = fM(tM1 , . . . tMk ) = fM(t1, . . . tk) = f(t1, . . . tk)

where the first equality is by the definition of the interpretation of a closed term,
the second equality is by induction, and the third equality is by the definition of
fM. �

We will now show that for every sentence φ in L, φ ∈ T if and only if M |= φ.
This will be shown by induction on φ. KEY POINT: I will organise the inductive
proof in exactly the same way as I recently organised the inductive definition of
satisfaction.

• Phase 1: we prove that for every sentence φ with no quantifiers, φ ∈ T if
and only if M |= φ. We start with the atomic sentences and then proceed
by induction on the number of connectives in φ.

– Base case: φ = R(t1, . . . tp) where R is a relation symbol and the ti
are closed terms.
By the definition of satisfaction,M |= φ if and only if RM(tM1 , . . . tMk ).
By the lemma we just proved on interpretation of closed terms in M,
tMi = ti for all i. By the definition of RM, RM(t1, . . . tk) if and only
if R(t1, . . . tk) ∈ T .
It follows that φ ∈ T if and only if M |= φ, and we have established
the base case of the induction.

– Successor steps: there is one successor step for each of the four propo-
sitional connectives. These are very similar to the corresponding steps
in the proof of Completeness for propositional logic, so we only do the
step for negation.
Let φ = ¬ψ. By the definition of satisfaction, M |= φ if and only
if M 6|= ψ. By induction M 6|= ψ if and only if ψ /∈ T . Since T is
Henkinised, ψ /∈ T if and only if ¬ψ ∈ T .

At the end of phase 1 we have established that if φ is a sentence with no
quantifiers then φ ∈ T if and only if M |= φ.

• Phase 2: we prove that for every sentence φ, φ ∈ T if and only if M |= φ.
We proceed by induction on the number of quantifiers in φ; the case where
φ has no quantifiers has already been handled by phase 1 of the argument.

For the induction step, suppose that we have shown that for every sen-
tence φ with at most n quantifiers, φ ∈ T if and only if M |= φ. We will
now establish the same statement for φ with n+1 quantifiers, by induction
on the number of connectives appearing in φ.

There are various cases, depending on how the formula φ was con-
structed. The steps for the propositional connectives are again similar to
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those for the proof of Completeness in propositional logic, so again we will
only do one step in detail: for variety we do the step for the ∧ connective.

– Let φ = ψ ∧ χ. The formulae ψ and χ have at most n+ 1 quantifiers
and have fewer connectives than does φ, so by induction we know that
M |= ψ if and only if ψ ∈ Γ, and similarly for χ.
By the definition of satisfaction M |= φ if and only if M |= ψ and
M |= χ, which in turn is true if and only if ψ ∈ T and χ ∈ T .
Since T is Henkinised it is deductively closed, it is easy to check that
ψ ∈ Γ and χ ∈ Γ if and only if φ ∈ Γ. The point is that {ψ, χ} ` φ
and φ ` {ψ, χ}.

Now we deal with the quantifiers. The case for the existential quantifier
represents the key point in the argument; it is here that we use the “Henkin
witnesses”.

– Let φ = ∃x ψ. Suppose firstly that M |= φ. By definition there is an
element t of M such that M |= ψ[x/ct]. Now cMt = t = tM, and so
M |= ψ[x/t].
The sentence ψ[x/t] is a sentence of L with n quantifiers, and so by
induction ψ[x/t] ∈ T . Since ψ[x/t] ` φ and T is deductively closed, it
follows that φ ∈ Γ.
Conversely suppose that φ ∈ T . Since T is Henkinised, there is some
constant symbol d such that ψ[x/d] ∈ T . By induction M |= ψ[x/d],
and so M |= ∃x ψ.

– Let φ = ∀x ψ. Suppose firstly that M |= ∀x ψ, and suppose for a
contradiction that ∀x ψ /∈ T . Since T is Henkinised ¬∀x ψ ∈ T , and
therefore ∃x ¬ψ ∈ T .
Since T is Henkinised there is a constant symbol d such that ¬ψ[x/d] ∈
T . By induction M |= ¬ψ[x/d], contradicting our assumption that
M |= ∀x ψ.
Now suppose M 6|= ∀x ψ, so that by definition M |= ¬ψ[x/ca] for
some a ∈ M . Since aM = a = cMa , M |= ¬ψ[x/a]. By induction
¬ψ[x/ca] ∈ T , and so since T is consistent ∀x ψ /∈ T .

This concludes the inductive proof that for every sentence φ of L, φ ∈ T if and
only if M |= φ. It follows trivially that M |= T .
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