SKETCHY NOTES FOR WEEK 4 OF BASIC LOGIC

We now leave the subject of propositional logic and turn to first-order logic,
which will be our main object of study for the rest of the term. As a motivation for
first-order logic, consider the following inference: given the hypotheses “Socrates is
human” and “Everyone who is human is mortal”, we conclude “Socrates is mortal”.
It is not so simple to formalise this argument in propositional logic, because to
capture the sense of “Everyone who is human is mortal” we need to write down
many implications of the general form “If Fred is human then Fred is mortal”.

We would like to have a logical system in which we can discuss properties like
being human or being mortal, and in which we have an economical way of saying
for example that every object has some property. To start with we need to be a bit
more precise about properties.

Definition 1. Let A be a set. Then an n-ary predicate on A (or n-ary relation on
A)is a set R C A™.

We are identifying the relation with the set of n-tuples for which it holds. If Ris a
relation we say that “R(aq,...ay) is true” when (a1, ...a,) € R and “R(aq,...ap)
is false” when (a1,...an) ¢ R.

Definition 2. Let A be a set. Then an n-ary function on A is a function from A™
to A.

In first order logic we typically start by fixing a signature (or vocabulary), which
is a set of symbols that will be used in building up the formulae. Different signatures
may be appropriate for different tasks: for we want to discuss number theory then a
typical signature might contain symbols intended to denote the numbers zero and
one, the operations of addition and multiplication, and the relations “less than”
and equality.

Definition 3. A signature is a triple (C, R, F) of sets of symbols, together with a
function arity from R UF to NT.

Given a signature V we will define sets of terms and formulae, which will be
finite strings of symbols from the following list.
(1) The connectives =, V, A\, —.
(2) The variable symbols {z; : i € N}.
(3) The quantifier symbols ¥V and 3.
(4) The set C of constant symbols.
(5) The set R of relation symbols.
(6) The set F of function symbols.
(7) The punctuation marks, that is to say the comma and the left and right
brackets.

By convention we assume that these sets of symbols are disjoint, so that there
is no possibility of confusion between different types of symbol.
In the setting of first order logic with equality we add a distinguished binary
relation symbol = to the set of relation symbols from the signature.
1

2 SKETCHY NOTES FOR WEEK 4 OF BASIC LOGIC

We start by defining the terms. These are strings which will (eventually, when
we get to semantics) be used to stand for objects; they are not themselves formulae,
but are building blocks for formulae.

Definition 4. The set of terms is defined by the following inductive structure:

(1) Ewvery constant symbol ¢ and variable symbol x is a term.
(2) If f is a function symbol with arity(f) = m and ty,...t,, are terms then
f1, ... tm) is a term.

A term is said to be closed if it contains no variable symbols.

Now that we have defined the terms we can define the atomic formulae. These
will be the basic objects in the inductive structure which defines formulae.

Definition 5. An atomic formula is a string of form R(ti,...ty) where R is a
relation symbol, arity(R) =m and ty,...t,, are terms.

We are now in a position to define the set of formulae. The definition starts with
the atomic formulae and builds up new formulae by using either the connectives
(exactly as we used them in propositional logic) or the variables and quantifiers
(this is new).

Definition 6. The set of formulae is defined by the following inductive structure:

(1) If ¢ is an atomic formula then ¢ is a formula.

(2) If ¢ and ¢ are formulae then (=), (¢ AY), (¢ V) (¢ — ¥) are formulae.

(3) If ¢ is a formula and x is a variable symbol then (3x @) and (Vx ¢) are
formulae.

Next we describe how the language can be interpreted. Any non-trivial language
has many different interpretations.

Definition 7. Given a signature, a structure M for that signature is given by the
following data:

(1) A nonempty set M (usually referred to as the underlying set of the structure
(2) For each constant symbol c, an element c™ of the set M.

(3) For each function symbol f, a function f™ from M) to M.

(4) For each relation symbol R, an arity(R)-ary relation RM C Marity(R),

Note: In the setting of first order logic with equality, we demand that the special
symbol = is interpreted by the equality relation.

Ultimately we aim to define a relation “M = ¢” (¢ is true in M) between
structures and (certain) formulae. If M is a structure for a signature then we
define the expanded language for M by adding a constant ¢, for each a € M. We
use the shorthand M-term for the cumbrous “term of the expanded language for
M, and so on for other concepts.

We start by defining how to interpret the closed M-terms. Notice that these
terms are generated by an inductive structure which starts off with the elements
of CU{cy : a € M}, and then generates more complex terms by applying function
symbols.

Definition 8. We define 7™ for T a closed M-term by induction.

e If 7 = ¢ for some constant symbol ¢ € C, 7™ = M.

SKETCHY NOTES FOR WEEK 4 OF BASIC LOGIC 3

o IfT=c, forac M, ™ =a.
o IfT = f(t1,...tm) for some function symbol f and closed M-termsty,...t,,
then M = fM@M M),

We continue defining the satisfaction relation. We need to make precise the idea
of substituting a term for a variable in a term or a formula.

Given a term 7 and variable x, we define an operation on terms “substitute 7
for 7. Informally this means replacing every appearance of x by 7.

Definition 9. Given terms p and 7 and a variable symbol x, we define plx /7| by
TEeCUrsion:

(1) If p is a constant symbol or variable symbol other than x, u[z/T] = p.

(2) If pis x, then plx/7] = 7.

(3) Ifpis f(t1,...tp) for a function symbol f and termstq,...t, then plz/T] =
f(ta[z/7], .. tplx/T]).

A routine induction shows that p[z/7] is a term.
In general it matters in what order we do substitutions.

z1[r1/xo][v2 /23] = 23, T1[T2/T3][71/72] = T2

Now we define what it means to substitute a term x for a variable 7 in a formula.
We can’t just replace every appearance of x by 7, because this does not always give
a formula and also it is not semantically sensible.

Definition 10. Given a formula ¢, a term 7 and a variable symbol x, we define
olz/T] by recursion:
(1) If ¢ is an atomic formula R(t1,...tp), then ¢lx/7] = R(t1[z/7], .. . tp[x/7]).
(2) If ¢ = (Yo@yy) for formulae 1; and a connective @ € {A,V,—} then
¢lz/7] = (Yolr /7] [z/7]).
(3) If ¢ = (=) for a formula 1, then ¢pla/T] = (—[z/T]).
(4) (The trickiest case!) If ¢ = (Qui) for a quantifier Q € {V,3}, then
olz/T) =@ if y is x and ¢lz/T] = (Qu|z/T]) if y is not x.

The intuition for the last clause: Appearances of y in ¥ are “bound” by quan-
tifying over y, and not availaable for substitution. A variable appearance is called
“free” if it is not bound by a quantifier. A variable may make both free and bound
apearances in a single formula.

Definition 11. We define a function Free by recursion, first on terms and then on
formulae. Free computes the set of variables appearing freely in a term or formula.
Terms: Free is given by the recursion
(1) Free(c) =0 for constant symbols c.
(2) Free(z) = {x}.
(3) Free(f(t1,...tp)) = Free(t1)U...U Free(ty).
Formulae: Free is given by the recursion
(1) Free(R(t1,...tp)) = Free(t1)U...U Free(t,) for atomic formulae.
(2) Free((¢pQi)) = Free(¢) U Free(vy), where @ is a binary connective.
(3) Free((—¢)) = Free(o).
(4) Free((Qxg)) = Free(¢) \ {x} where Q is a quantifier.

Now we can define the class of formulae which have well-defined truth values.

4 SKETCHY NOTES FOR WEEK 4 OF BASIC LOGIC

Definition 12. A formula ¢ is a sentence if and only if Free(¢) = (.

We are finally ready to define satisfaction. The definition is by recursion (with
a twist!) on sentences in the expanded language.

Definition 13. Let V be a vocabulary and let M be a structure for V.. Then we
define a relation M = ¢ for sentences ¢ of the expanded language.

¢ = R(t1,...tp) where R is a relation symbol. Since ¢ is a sentence all the t; are
closed M-terms. M = ¢ if and only if (t], .. .t;\’t) € RM.

= (¢1 A d). M = ¢ if and only if M = ¢1 and M = és.

(61V ¢2). M = ¢ if and only if M |= ¢y or M = ¢s.

(61— ¢2). M |= ¢ if and only if whenever M |= ¢y, then M = ¢s.
(

(

—p). M = ¢ if and only if M = 1.
Jzp). M = ¢ if and only if there exists a € M such that M |= Y[z /c,].

¢
¢
¢
¢
¢
¢

(Vz2p). M = ¢ if and only if for every a € M, M |= [z /cq).

This definition is not quite covered by the Recursion theorem we proved earlier
in the term. The problem is that even though the system which generates formulae
is uniquely readable, we have defined the relation for (Qz) (Q a quantifier) in
terms of the relation for various formulae 1[z/c,] rather than the formula ¢. How
can we prove it is a valid recursive definition?

