SKETCHY NOTES FOR WEEK 3 OF BASIC LOGIC, PART THREE

1. Completeness

The proof of the Completeness theorem needs a few preparatory lemmas. Here is a brief sketch of how the proof will eventually go: we will show that if Γ does not prove δ , then there is a truth assignment f such that f satisfies Γ but f does not satisfy δ . That will show that Γ does not entail δ .

Definition 1. Let Γ be a theory.

- (1) Γ is consistent if and only if for every β , Γ proves at most one of β and $(\neg \beta)$.
- (2) Γ is complete if and only if for every β , Γ proves at least one of β and $(\neg \beta)$.
- (3) Γ is deductively closed if and only if for every β , if $\Gamma \vdash \beta$ then $\beta \in \Gamma$.

Notice that Γ is contained in its deductive closure.

Lemma 1. If Γ does not prove δ , then $\Gamma \cup \{(\neg \delta)\}$ is consistent.

Proof. Suppose for contradiction that $\Gamma \cup \{(\neg \delta)\}$ is not consistent. Fix proofs P_1 , P_2 with hypotheses in $\Gamma \cup \{(\neg \delta)\}$ such that P_1 has conclusion β , P_2 has conclusion $(\neg \beta)$.

Using the \neg -introduction rule and the contradiction rule we build a proof

$$\frac{\frac{P_1^* \quad P_2^*}{(\neg(\neg\delta))}}{\delta} \ (\neg I) \\ \frac{(\neg AA)}{\delta}$$

where P_i^* is obtained from P_i by cancelling appearances of $(\neg \delta)$ in the hypotheses. The hypotheses of this proof are in Γ , so Γ proves δ .

Lemma 2. If Γ does not prove $(\neg \delta)$, then $\Gamma \cup \{\delta\}$ is consistent.

Proof. Suppose for contradiction that $\Gamma \cup \{\delta\}$ is not consistent. Fix proofs P_1, P_2 with hypotheses in $\Gamma \cup \{\delta\}$ such that P_1 has conclusion β , P_2 has conclusion $(\neg\beta)$.

Using the \neg -introduction rule we build a proof

$$\frac{P_1^* \quad P_2^*}{\neg \delta} \ (\neg I)$$

where P_i^* is obtained from P_i by cancelling appearances of δ in the hypotheses. The hypotheses of this proof are in Γ , so Γ proves $\neg \delta$.

To prove the Completeness theorem we will also need the technical concept of *countability*.

Definition 2. A set X is countably infinite if and only if there is a bijection between \mathbb{N} and X. X is countable if and only if X is finite or countably infinite.

Examples of countably infinite sets include \mathbb{N} , \mathbb{Z} , \mathbb{Q} and the set of all finite subsets of \mathbb{N} .

The following fact is standard: if X is countably infinite then so is the set of all finite strings from X. It is a also standard fact that a subset of a countable set is countable.

Lemma 3. The set of wffs is countably infinite.

Proof sketch. The set S of symbols used in building formulae of propositional logic is countable. So the set of all finite strings from S is countable, hence the set of wff's is countable. \Box

The next result contains the main idea in the proof of the Completeness theorem.

Lemma 4. Let Δ be a consistent theory. Then there exists a theory Δ^* such that

- (1) $\Delta \subseteq \Delta^*$.
- (2) Δ^* is consistent.
- (3) For all formulae γ , either $\gamma \in \Delta^*$ or $\neg \gamma \in \Delta^*$.

Proof. Enumerate the wff's as $\langle \gamma_n : n \in \mathbb{N} \rangle$. We will build by recursion a sequence of sets of formulae $\langle \Delta_n : n \in \mathbb{N} \rangle$ with the following properties:

(1)
$$\Delta_0 = \Delta$$
.

- (2) Δ_n is consistent.
- (3) $\Delta_n \subseteq \Delta_{n+1}$.
- (4) One of the formulae γ_n , $(\neg \gamma_n)$ is in the set Δ_{n+1} .

Suppose that we have constructed Δ_n . Since Δ_n is consistent, it does not prove both of the formulae γ_n , $(\neg \gamma_n)$.

If Δ_n does prove γ_n then Δ_n does not prove $(\neg \gamma_n)$, and we set $\Delta_{n+1} = \Delta_n \cup \{\gamma_n\}$. If Δ_n does not prove γ_n , then we set $\Delta_{n+1} = \Delta_n \cup \{(\neg \gamma_n)\}$.

We now let $\Delta^* = \bigcup_n \Delta_n$. It is clear that $\Delta \subseteq \Delta^*$, and that Δ^* contains at least one of γ and $(\neg \gamma)$ for every γ .

To see that Δ^* is consistent, suppose for a contradiction that Δ^* is not consistent. Fix proofs P and Q with hypotheses in Δ^* , such that P has conclusion β and Q has conclusion $(\neg\beta)$. Since the proofs P and Q each have finite sets of hypotheses, and the sequence of sets $\langle \Delta_n : n \in \mathbb{N} \rangle$ is increasing, we may fix some integer N sufficiently large that all the hypotheses of P and Q lie in Δ_N . This contradicts the consistency of Δ_N .

Notice that the Δ^* we have just constructed will contain exactly one of γ and $(\neg \gamma)$ for every γ , since it is consistent.

Lemma 5. If Δ is consistent and Δ contains at least one of γ and $(\neg \gamma)$ for every γ , then Δ is deductively closed.

Proof. Let Δ prove ψ . Then it must be that $\psi \in \Delta$, for if not then $(\neg \psi) \in \Delta$ which contradicts the consistency of Δ .

Before starting the next lemma we make a notational convention: if Γ and Δ are sets of formulae then we say $\Gamma \vdash \Delta$ if and only if $\Gamma \vdash \delta$ for every $\delta \in \Delta$.

Lemma 6. Let Δ be consistent and suppose that for every ϕ , either $\phi \in \Delta$ or $(\neg \phi) \in \Delta$. There is a truth assignment f such that for all wff's γ , $f \models \gamma \iff \gamma \in \Delta$.

Proof. For every n, either $A_n \in \Delta$ or $(\neg A_n) \in \Delta$. We define f by setting $f(A_n) = T$ if $A_n \in \Delta$, and $f(A_n) = F$ if $(\neg A_n) \in \Delta$.

Now we show by induction on the inductive structure for propositional logic that for every formula ϕ , $f \models \phi \iff \phi \in T$. Notice that $f \not\models \phi$ if and only if $f \models \neg \phi$.

 $\phi = (\neg \psi)$. By the construction of Δ , $\phi \in \Delta$ if and only if $\psi \notin \Delta$. By induction $\psi \notin \Delta$ if and only if $f \models \neg \psi$. Putting these various equivalences together, $\phi \in \Delta$ if and only if $f \models \phi$.

 $\phi = (\psi_1 \wedge \psi_2).$

If $\phi \in \Delta$, then since Δ is deductively closed and $\{\phi\} \vdash \{\psi_1, \psi_2\}$ it follows that $\psi_1 \in \Delta$ and $\psi_2 \in \Delta$. By induction $f \models \psi_1$ and $f \models \psi_2$, hence $f \models \phi$.

If $f \models \phi$ then $f \models \psi_1$ and $f \models \psi_2$, hence by induction ψ_1 and ψ_2 are both in Δ . Since Δ is deductively closed and $\{\psi_1, \psi_2\} \vdash \phi$, it follows that $\phi \in \Delta$.

 $\phi = (\psi_1 \lor \psi_2).$

It turns out to be easier to check that $\phi \notin \Delta$ if and only if $f \models \neg \phi$.

If $\phi \notin \Delta$, then $(\neg \phi) \in \Delta$. Now $(\neg \phi) \vdash \{(\neg \psi_1), (\neg \psi_2)\}$, so $(\neg \psi_1)$ and $(\neg \psi_2)$ are in Δ . Therefore $\psi_1 \notin \Delta$ and $\psi_2 \notin \Delta$, and so by induction $f \models \neg \psi_1$ and $f \models \neg \psi_2$, so $f \models \neg \phi$.

Conversely suppose that $f \models \neg \phi$, so that $f \models \neg \psi_1$ and $f \models \neg \psi_2$. By induction $(\neg \psi_1)$ and $(\neg \psi_2)$ are in Δ , and using the fact that $\{(\neg \psi_1), (\neg \psi_2)\} \vdash (\neg \phi)$ we conclude that $\neg \phi \in \Delta$ and so $\phi \notin \Delta$.

 $\phi = (\psi_1 \to \psi_2).$

As in the preceding case it is easier to show that $\phi \notin \Delta$ if and only if $f \models \neg \phi$. If $\phi \notin \Delta$ then $(\neg \phi) \in \Delta$. Since $\{(\neg \phi)\} \vdash \{\psi_1, (\neg \psi_2)\}, \psi_1 \in \Delta$ and $(\neg \psi_2) \in \Delta$.

By induction $f \models \psi_1$ and $f \models \neg \psi_2$, so $f \models \neg \phi$. Now suppose that $f \models \neg \phi$, so that by definition $f \models \psi_1$ and $f \models \neg \psi_2$. Using the fact that $\{\psi_1, (\neg \psi_2)\} \vdash (\neg \phi)$ we can argue in a familiar way that $\phi \notin \Delta$.

Exercise 1. The proof of the last result depended on the following claims. Verify them (they are all pretty easy!)

- $\{(\psi_1 \land \psi_2)\} \vdash \{\psi_1, \psi_2\}.$
- $\{\psi_1, \psi_2\} \vdash (\psi_1 \land \psi_2).$
- $\{(\neg(\psi_1 \lor \psi_2))\} \vdash \{(\neg\psi_1), (\neg\psi_2)\}.$
- $\{(\neg \psi_1), (\neg \psi_2)\} \vdash (\neg (\psi_1 \lor \psi_2)).$
- $\{(\neg(\psi_1 \to \psi_2))\} \vdash \{\psi_1, (\neg\psi_2)\}.$
- $\{\psi_1, (\neg \psi_2)\} \vdash (\neg (\psi_1 \to \psi_2)).$

Now for the Completeness theorem.

Theorem 1 (Completeness for propositional logic). If $\Gamma \models \delta$ then $\Gamma \vdash \delta$.

Proof. Suppose that $\Gamma \not\models \delta$. Then the theory $\Delta = \Gamma \cup \neg \delta$ is consistent. Using the results above we can extend Δ to a consistent Δ^* such that for every γ either γ or $\neg \gamma$ is in Δ^* , and then find f such that $f \models \Delta^*$. So $f \models \Gamma$ and $f \models \neg \delta$, and thus $\Gamma \not\models \delta$.