SKETCHY NOTES FOR WEEK 3 OF BASIC LOGIC, PART
THREE

1. COMPLETENESS

The proof of the Completeness theorem needs a few preparatory lemmas. Here
is a brief sketch of how the proof will eventually go: we will show that if I" does
not prove ¢, then there is a truth assignment f such that f satisfies I" but f does
not satisfy §. That will show that I" does not entail 4.

Definition 1. Let T" be a theory.

(1) T s consistent if and only if for every 8, T' proves at most one of § and
(—B).

(2) T is complete if and only if for every 8, T' proves at least one of B and
(=5).

(3) T is deductively closed if and only if for every B, if T+ 8 then B €T.

Notice that I' is contained in its deductive closure.
Lemma 1. IfT' does not prove §, then T'U {(=0)} is consistent.

Proof. Suppose for contradiction that I' U {(—d)} is not consistent. Fix proofs P,
P, with hypotheses in I' U {(—d)} such that P; has conclusion 3, P» has conclusion

(=8).
Using the —-introduction rule and the contradiction rule we build a proof
Py Py
ey )
(RAA)
)
where P} is obtained from P; by cancelling appearances of (—4) in the hypotheses.
The hypotheses of this proof are in I'; so ' proves §. ([

Lemma 2. IfT' does not prove (—6), then T'U {0} is consistent.

Proof. Suppose for contradiction that I' U {d} is not consistent. Fix proofs Py, P»
with hypotheses in T'U {0} such that P; has conclusion 3, P, has conclusion (—f).
Using the —-introduction rule we build a proof
pr Py
-1
2 ()

where P is obtained from P; by cancelling appearances of § in the hypotheses.

The hypotheses of this proof are in I'; so I proves —d. ([

To prove the Completeness theorem we will also need the technical concept of
countability.

Definition 2. A set X is countably infinite if and only if there is a bijection
between N and X. X is countable if and only if X is finite or countably infinite.
1
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Examples of countably infinite sets include N, Z, Q and the set of all finite
subsets of N.

The following fact is standard: if X is countably infinite then so is the set of all
finite strings from X. It is a also standard fact that a subset of a countable set is
countable.

Lemma 3. The set of wffs is countably infinite.

Proof sketch. The set S of symbols used in building formulae of propositional logic
is countable. So the set of all finite strings from S is countable, hence the set of
wif’s is countable. O

The next result contains the main idea in the proof of the Completeness theorem.

Lemma 4. Let A be a consistent theory. Then there exists a theory A* such that
(1) A C A~
(2) A* is consistent.
(3) For all formulae v, either v € A* or —y € A*.

Proof. Enumerate the wit’s as (7, : n € N). We will build by recursion a sequence
of sets of formulae (A, : n € N) with the following properties:

(1) Ag =A.

(2) A, is consistent.

(3) An C An-‘,—l-

(4) One of the formulae 7y, (—7y,) is in the set Ay 4.

Suppose that we have constructed A,,. Since A, is consistent, it does not prove
both of the formulae 7, (—y,).

If A,, does prove 7, then A,, does not prove (=, ), and we set A, 11 = A, U{v,}.
If A, does not prove v, then we set A,,11 = A, U{(—n)}-

We now let A* =, A,. It is clear that A C A*, and that A* contains at least
one of v and (—) for every 7.

To see that A* is consistent, suppose for a contradiction that A* is not consistent.
Fix proofs P and () with hypotheses in A*, such that P has conclusion 8 and Q
has conclusion (—=f). Since the proofs P and @ each have finite sets of hypotheses,
and the sequence of sets (A, : n € N) is increasing, we may fix some integer N
sufficiently large that all the hypotheses of P and @ lie in Ay. This contradicts
the consistency of Ay. O

Notice that the A* we have just constructed will contain exactly one of v and
(—y) for every =, since it is consistent.

Lemma 5. If A is consistent and A contains at least one of v and (—y) for every
v, then A is deductively closed.

Proof. Let A prove ¢. Then it must be that ¢ € A, for if not then (—1) € A which
contradicts the consistency of A. O

Before starting the next lemma we make a notational convention: if I' and A are
sets of formulae then we say I' = A if and only if T F § for every § € A.

Lemma 6. Let A be consistent and suppose that for every ¢, either ¢ € A or
(m¢) € A. There is a truth assignment f such that for all wff’s~v, fE~v < v €
A.
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Proof. For every n, either A,, € A or (—A4,) € A. We define f by setting f(A,) =T
it A, € A, and f(A,) =F if (-4,) € A.

Now we show by induction on the inductive structure for propositional logic that
for every formula ¢, f = ¢ <= ¢ € T. Notice that f [~ ¢ if and only if f | —¢.

¢ = (—). By the construction of A, ¢ € A if and only if ¢» ¢ A. By induction
¥ ¢ A if and only if f = —). Putting these various equivalences together, ¢ € A
if and only if f = ¢.

¢ = (1 A t2).

If ¢ € A, then since A is deductively closed and {¢} F {¢1,12} it follows that
Y1 € A and 1y € A. By induction f =1 and f |E 19, hence f = ¢.

If f = ¢ then f =91 and f |= 19, hence by induction 9, and s are both in A.
Since A is deductively closed and {11,992} F ¢, it follows that ¢ € A.

¢ = (1 Vih2).

It turns out to be easier to check that ¢ ¢ A if and only if f = —¢.

If ¢ ¢ A, then (=¢) € A. Now (—¢) F {(—91), (m12)}, so (—h1) and (—py) are
in A. Therefore ¢ ¢ A and 1y ¢ A, and so by induction f = =1 and f = 1o,
50 f b= .

Conversely suppose that f = —¢, so that f = —¢; and f | —)2. By induction
(—p1) and (—tp9) are in A, and using the fact that {(—1), (—¢2)} F (@) we
conclude that ~¢ € A and so ¢ ¢ A.

¢ = (Y1 — 2).
As in the preceding case it is easier to show that ¢ ¢ A if and only if f = —¢.
If ¢ ¢ A then (ﬁ(b) € A. Since {(ﬁqﬁ)} = {’(/Jh (ﬁ’(/)z)}, Y1 € A and (ﬁ’lﬂg) e A.
By induction f =7 and f = -9, so f | —¢.
Now suppose that f = —¢, so that by definition f = ¢, and f = . Using
the fact that {1, (—12)} F (=¢) we can argue in a familiar way that ¢ ¢ A.
O

Exercise 1. The proof of the last result depended on the following claims. Verify
them (they are all pretty easy!)

o {(Y1 Np2)} E {31,902}

o {1, U2} F (Y1 Abo).

o {(=(1 V) } EA{(=eh1), (mip2)}-
o {(m1), (m2)} F (—=(¥1 V ¢2)).

o {(=(¥1 = 2))} F {1, (—¢2) }

o {1, (—2)} F (=(¢1 — 1h2)).

Now for the Completeness theorem.
Theorem 1 (Completeness for propositional logic). If T' =6 then T'F 6.

Proof. Suppose that I" I/ §. Then the theory A = I" U =6 is consistent. Using the
results above we can extend A to a consistent A* such that for every ~ either v or
—y is in A*, and then find f such that f = A*. So f =T and f | =4, and thus
T B4 |



