
SKETCHY NOTES FOR WEEK 3 OF BASIC LOGIC, PART

THREE

1. Completeness

The proof of the Completeness theorem needs a few preparatory lemmas. Here
is a brief sketch of how the proof will eventually go: we will show that if Γ does
not prove δ, then there is a truth assignment f such that f satisfies Γ but f does
not satisfy δ. That will show that Γ does not entail δ.

Definition 1. Let Γ be a theory.

(1) Γ is consistent if and only if for every β, Γ proves at most one of β and
(¬β).

(2) Γ is complete if and only if for every β, Γ proves at least one of β and
(¬β).

(3) Γ is deductively closed if and only if for every β, if Γ ` β then β ∈ Γ.

Notice that Γ is contained in its deductive closure.

Lemma 1. If Γ does not prove δ, then Γ ∪ {(¬δ)} is consistent.

Proof. Suppose for contradiction that Γ ∪ {(¬δ)} is not consistent. Fix proofs P1,
P2 with hypotheses in Γ∪ {(¬δ)} such that P1 has conclusion β, P2 has conclusion
(¬β).

Using the ¬-introduction rule and the contradiction rule we build a proof

P ∗
1 P ∗

2

(¬(¬δ))
(¬I)

δ
(RAA)

where P ∗
i is obtained from Pi by cancelling appearances of (¬δ) in the hypotheses.

The hypotheses of this proof are in Γ, so Γ proves δ. �

Lemma 2. If Γ does not prove (¬δ), then Γ ∪ {δ} is consistent.

Proof. Suppose for contradiction that Γ ∪ {δ} is not consistent. Fix proofs P1, P2

with hypotheses in Γ ∪ {δ} such that P1 has conclusion β, P2 has conclusion (¬β).
Using the ¬-introduction rule we build a proof

P ∗
1 P ∗

2

¬δ (¬I)

where P ∗
i is obtained from Pi by cancelling appearances of δ in the hypotheses.

The hypotheses of this proof are in Γ, so Γ proves ¬δ. �

To prove the Completeness theorem we will also need the technical concept of
countability.

Definition 2. A set X is countably infinite if and only if there is a bijection
between N and X. X is countable if and only if X is finite or countably infinite.
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Examples of countably infinite sets include N, Z, Q and the set of all finite
subsets of N.

The following fact is standard: if X is countably infinite then so is the set of all
finite strings from X. It is a also standard fact that a subset of a countable set is
countable.

Lemma 3. The set of wffs is countably infinite.

Proof sketch. The set S of symbols used in building formulae of propositional logic
is countable. So the set of all finite strings from S is countable, hence the set of
wff’s is countable. �

The next result contains the main idea in the proof of the Completeness theorem.

Lemma 4. Let ∆ be a consistent theory. Then there exists a theory ∆∗ such that

(1) ∆ ⊆ ∆∗.
(2) ∆∗ is consistent.
(3) For all formulae γ, either γ ∈ ∆∗ or ¬γ ∈ ∆∗.

Proof. Enumerate the wff’s as 〈γn : n ∈ N〉. We will build by recursion a sequence
of sets of formulae 〈∆n : n ∈ N〉 with the following properties:

(1) ∆0 = ∆.
(2) ∆n is consistent.
(3) ∆n ⊆ ∆n+1.
(4) One of the formulae γn, (¬γn) is in the set ∆n+1.

Suppose that we have constructed ∆n. Since ∆n is consistent, it does not prove
both of the formulae γn, (¬γn).

If ∆n does prove γn then ∆n does not prove (¬γn), and we set ∆n+1 = ∆n∪{γn}.
If ∆n does not prove γn, then we set ∆n+1 = ∆n ∪ {(¬γn)}.

We now let ∆∗ =
⋃

n ∆n. It is clear that ∆ ⊆ ∆∗, and that ∆∗ contains at least
one of γ and (¬γ) for every γ.

To see that ∆∗ is consistent, suppose for a contradiction that ∆∗ is not consistent.
Fix proofs P and Q with hypotheses in ∆∗, such that P has conclusion β and Q
has conclusion (¬β). Since the proofs P and Q each have finite sets of hypotheses,
and the sequence of sets 〈∆n : n ∈ N〉 is increasing, we may fix some integer N
sufficiently large that all the hypotheses of P and Q lie in ∆N . This contradicts
the consistency of ∆N . �

Notice that the ∆∗ we have just constructed will contain exactly one of γ and
(¬γ) for every γ, since it is consistent.

Lemma 5. If ∆ is consistent and ∆ contains at least one of γ and (¬γ) for every
γ, then ∆ is deductively closed.

Proof. Let ∆ prove ψ. Then it must be that ψ ∈ ∆, for if not then (¬ψ) ∈ ∆ which
contradicts the consistency of ∆. �

Before starting the next lemma we make a notational convention: if Γ and ∆ are
sets of formulae then we say Γ ` ∆ if and only if Γ ` δ for every δ ∈ ∆.

Lemma 6. Let ∆ be consistent and suppose that for every φ, either φ ∈ ∆ or
(¬φ) ∈ ∆. There is a truth assignment f such that for all wff’s γ, f |= γ ⇐⇒ γ ∈
∆.
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Proof. For every n, either An ∈ ∆ or (¬An) ∈ ∆. We define f by setting f(An) = T
if An ∈ ∆, and f(An) = F if (¬An) ∈ ∆.

Now we show by induction on the inductive structure for propositional logic that
for every formula φ, f |= φ ⇐⇒ φ ∈ T . Notice that f 6|= φ if and only if f |= ¬φ.

φ = (¬ψ). By the construction of ∆, φ ∈ ∆ if and only if ψ /∈ ∆. By induction
ψ /∈ ∆ if and only if f |= ¬ψ. Putting these various equivalences together, φ ∈ ∆
if and only if f |= φ.

φ = (ψ1 ∧ ψ2).
If φ ∈ ∆, then since ∆ is deductively closed and {φ} ` {ψ1, ψ2} it follows that

ψ1 ∈ ∆ and ψ2 ∈ ∆. By induction f |= ψ1 and f |= ψ2, hence f |= φ.
If f |= φ then f |= ψ1 and f |= ψ2, hence by induction ψ1 and ψ2 are both in ∆.

Since ∆ is deductively closed and {ψ1, ψ2} ` φ, it follows that φ ∈ ∆.

φ = (ψ1 ∨ ψ2).
It turns out to be easier to check that φ /∈ ∆ if and only if f |= ¬φ.
If φ /∈ ∆, then (¬φ) ∈ ∆. Now (¬φ) ` {(¬ψ1), (¬ψ2)}, so (¬ψ1) and (¬ψ2) are

in ∆. Therefore ψ1 /∈ ∆ and ψ2 /∈ ∆, and so by induction f |= ¬ψ1 and f |= ¬ψ2,
so f |= ¬φ.

Conversely suppose that f |= ¬φ, so that f |= ¬ψ1 and f |= ¬ψ2. By induction
(¬ψ1) and (¬ψ2) are in ∆, and using the fact that {(¬ψ1), (¬ψ2)} ` (¬φ) we
conclude that ¬φ ∈ ∆ and so φ /∈ ∆.

φ = (ψ1 → ψ2).
As in the preceding case it is easier to show that φ /∈ ∆ if and only if f |= ¬φ.
If φ /∈ ∆ then (¬φ) ∈ ∆. Since {(¬φ)} ` {ψ1, (¬ψ2)}, ψ1 ∈ ∆ and (¬ψ2) ∈ ∆.

By induction f |= ψ1 and f |= ¬ψ2, so f |= ¬φ.
Now suppose that f |= ¬φ, so that by definition f |= ψ1 and f |= ¬ψ2. Using

the fact that {ψ1, (¬ψ2)} ` (¬φ) we can argue in a familiar way that φ /∈ ∆.
�

Exercise 1. The proof of the last result depended on the following claims. Verify
them (they are all pretty easy!)

• {(ψ1 ∧ ψ2)} ` {ψ1, ψ2}.
• {ψ1, ψ2} ` (ψ1 ∧ ψ2).
• {(¬(ψ1 ∨ ψ2))} ` {(¬ψ1), (¬ψ2)}.
• {(¬ψ1), (¬ψ2)} ` (¬(ψ1 ∨ ψ2)).
• {(¬(ψ1 → ψ2))} ` {ψ1, (¬ψ2)}.
• {ψ1, (¬ψ2)} ` (¬(ψ1 → ψ2)).

Now for the Completeness theorem.

Theorem 1 (Completeness for propositional logic). If Γ |= δ then Γ ` δ.

Proof. Suppose that Γ 6` δ. Then the theory ∆ = Γ ∪ ¬δ is consistent. Using the
results above we can extend ∆ to a consistent ∆∗ such that for every γ either γ or
¬γ is in ∆∗, and then find f such that f |= ∆∗. So f |= Γ and f |= ¬δ, and thus
Γ 6|= δ. �


