SKETCHY NOTES FOR WEEK 2 OF BASIC LOGIC

The point of unique readability is to enable definition by recursion. The idea
of a recursive definition is this: we will specify a function G on C' = C(B, K) by
specifying what G does on B, and specifying how to compute G(F(aq,...ax—1))
from ag,...ar—1 and G(ap),...G(ar—1). Unique readability will ensure that this
definition makes sense by avoiding situations where some element of C' might get
assigned more than one value.

Before proving a general theorem about recursive definitions, we analyse uniquely
readable structures. Recall that in general C(B,K) = |J,, Cpn, where Cy = B and
Cpnt1=CrU{F(a): Fe K,deCy}.

Note on notation: T am using “@” as shorthand for an argument tuple (ao, . . . ax—1)
and “d € C,,” as shorthand for the assertion that all entries a; are in C,.

Now suppose that (B, K) is a uniquely readable inductive structure for C' and
that ¢ € Cpy1 \ Cn. By the definition of unique readability and the fact that
¢ € C'\ B, there must be a unique F' € K and a unique tuple @ € C such that
¢ = F(@). By the definition of C,11 there must be F/ € K and @’ € C,, with
¢ = F’(d’), and the uniqueness tells us that F' = F and @ = d. Summarising: if
¢ € Cpy1 \ Oy, then it’s generated in exactly one way, by applying a function in K
to a tuple with entries in C,,.

One more note: we will be recursively defining a function G from C' to some fixed
“codomain” D. The point of fixing the codomain in advance is to make sure that the
recursive definition does not break down by getting into a situation where we don’t
know how to compute G(F(ag, ...ar—1)) from ag,...ax—1 and G(ap), ... G(ag-1).

Theorem 1. Let (B, K) be a uniquely readable inductive structure for C, and let
D be some set. Let Gy : B — D and for each F € K let Hp : C* x D* — D where
k is the arity of F. Then there is a unique function G : C'— D such that
e Force B, G(c) = Go(c).
e Force C, G(¢) = Hp(ao, . ..ak-1,G(ag),...G(ax—1)) for the unique F €
K and (ag, .. .ax,) € C* Ndom(F) with ¢ = F(ag,...ax_1).

Proof. The proof that there is at most one G with these properties is a straight-
forward induction on the inductive structure. If G and G’ are two such functions
then the induction hypothesis is that G(¢) = G’(¢). The base case holds because
G(c) = Go(c) = G'(c¢) for all ¢ € B, and the induction step holds because if
G(a;) = G'(a;) for all 4 then

C:(f‘ﬁ(ao7 N ak_l)) = IJF(G,O7 e Ak—1, G(ao), ce G(ak_l)) =

HF(aO, e Qk—1, G/(ao), . G'(ak_l)) = C;’/(}‘j(a,o7 - ak_l)).

To show that there exists at least one GG, we construct a suitable function in
stages, where at stage n we define the function on C,,. We will define functions
G,, : C,, = D by recursion on n, making sure that G, 1 | C,, = Gy,.

Base: G is the given function Gg : C — D.

Recursion step: Suppose we defined G, : C,, = D. We define G,41(c) = Gp(c)
forc € C,. Forc € Cp,11\C,, wedefine G, 11(c) = Hp(ao, ... ax—1,Gn(ag), ... Gnlag—1)).

1



2 SKETCHY NOTES FOR WEEK 2 OF BASIC LOGIC

for the unique function F' € K and tuple (ao, . . . ax—1) such that ¢ = F(aq,...,a5-1):
this makes sense because (as we observed already) the tuple (ag,...ar—1) consists
of elements of C,, so that the values G,,(a;) were all defined already.

Finally we define G by setting G(c¢) = G, (c) for the least n such that ¢ € C,,.
Since we made sure that G411 | C, = G, G, | C, = G, for all m > n, and so
easily G(c) = G,(c) for every n such that ¢ € C,.

Now we verify that this G works. The proof is an easy induction on n, where
the induction hypothesis states that G(c) satisfies the defining properties for all
ce C,.

Base case: n = 0. When ¢ € B = (), we defined G(c) = Gy(c).

Successor step: Suppose that G(c) is as required for all ¢ € C,,. Let ¢ € Cp1q.
If ¢ € C), then there is nothing to do. If ¢ € Cy,11 \ Cy, then ¢ = F(ay, . ..ax—1) for
F € K and a; € C,,, and we have

G(C) = Gn+1(c) = HF(CLQ, e k-1, Gn(ao), e Gn(ak_l)) =

HF(ao, e Qp—1, G(ao), e G(ak,l))
(]

Remark: We worded the statement of the Theorem to make the recursive char-
acter of the definition rather explicit. An equivalent formulation (closer to what we
use in practice) says:

Given Gg and Hp for F € K as above, there is a unique G : C — D satisfying the
equations:
L Go =G T B.
o G(F(ag,...ax-1)) = Hp(ao,...ar-1,G(ag),...G(ax—1)) for all ' € K and
all (ag, . ..ak_1) € dom(F) N CF.

Now for a blizzard of definitions.

We fix a set {T, F'} of truth values and define various operations on the set of
truth values.

e ~F =T -T=F.

e I'VT=TVF=FVT=T,FVF=F.

e FAF=FNT=TANF=F,TNT=T.

o I'>T=F—>T=F—-F=T,T—F=F.

It is important to understand that these are finitary functions, and are not the
same as the corresponding symbols in the alphabet for propositional logic: the
symbols denote the functions, in rather the same way that “James Cummings” is
a string of 14 ascii symbols but denotes a math professor.

Definition 1. A truth assignment is a function f from {A, :n € N} to {T, F}.

To each truth assignment f we will associate a function F' from the set of wil’s
to {T, F'} by the following recursive definition:

(1) F(An) = f(An).

(2) F((aAp))=F(a) NF(p).
(3) F((aVp)) = Fla)V F(p).
(4) F((a = p)) = F(a) = F(p).
() F((-a)) = ~F(e)

Note: In class we used f for the original truth assignment and F' for the induced
function from wiff’s to truth values to underline the point that they are distinct



SKETCHY NOTES FOR WEEK 2 OF BASIC LOGIC 3

functions. In practice we usually just use the same symbol for both of them, and
(unlike in class) we have followed this convention below.

Definition 2. (1) A theory is a set of wff’s.

(2) If f is a truth assignment and « is a wff then f satisfies o (f | «) if and
only if fla)=T.

(3) If S is a theory and f is a truth assignment, then f satisfies S (f = S) if
and only if f = « for alla € S.

(4) If S is a theory and « is a wff, then S entails « (S |= «) if and only if for
every truth assignment f, if f E S then f = «.

(5) If S and S’ are theories then S entails S" (S | S’) if and only if S = «
foralla e S'.

(6) A wff «a is a syllogism if and only if f = « for every truth assignment f.

Example: AgV —Ay is a syllogism, {Ag, Ag — A1} entails A;.
Note: In class we started a discussion of proofs, but since it was informal and
incomplete I will leave that to next week’s notes.



