
SKETCHY NOTES FOR WEEK 2 OF BASIC LOGIC

The point of unique readability is to enable definition by recursion. The idea
of a recursive definition is this: we will specify a function G on C = C(B,K) by
specifying what G does on B, and specifying how to compute G(F (a0, . . . ak−1))
from a0, . . . ak−1 and G(a0), . . . G(ak−1). Unique readability will ensure that this
definition makes sense by avoiding situations where some element of C might get
assigned more than one value.

Before proving a general theorem about recursive definitions, we analyse uniquely
readable structures. Recall that in general C(B,K) =

⋃
n Cn, where C0 = B and

Cn+1 = Cn

⋃
{F (~a) : F ∈ K,~a ∈ Cn}.

Note on notation: I am using “~a” as shorthand for an argument tuple (a0, . . . ak−1)
and “~a ∈ Cn” as shorthand for the assertion that all entries ai are in Cn.

Now suppose that (B,K) is a uniquely readable inductive structure for C and
that c ∈ Cn+1 \ Cn. By the definition of unique readability and the fact that
c ∈ C \ B, there must be a unique F ∈ K and a unique tuple ~a ∈ C such that
c = F (~a). By the definition of Cn+1 there must be F ′ ∈ K and ~a′ ∈ Cn with
c = F ′(a′), and the uniqueness tells us that F ′ = F and ~a = ~a. Summarising: if
c ∈ Cn+1 \ Cn then it’s generated in exactly one way, by applying a function in K
to a tuple with entries in Cn.

One more note: we will be recursively defining a function G from C to some fixed
“codomain” D. The point of fixing the codomain in advance is to make sure that the
recursive definition does not break down by getting into a situation where we don’t
know how to compute G(F (a0, . . . ak−1)) from a0, . . . ak−1 and G(a0), . . . G(ak−1).

Theorem 1. Let (B,K) be a uniquely readable inductive structure for C, and let
D be some set. Let G0 : B → D and for each F ∈ K let HF : Ck ×Dk → D where
k is the arity of F . Then there is a unique function G : C → D such that

• For c ∈ B, G(c) = G0(c).
• For c ∈ C, G(c) = HF (a0, . . . ak−1, G(a0), . . . G(ak−1)) for the unique F ∈
K and (a0, . . . ak1

) ∈ Ck ∩ dom(F) with c = F (a0, . . . ak−1).

Proof. The proof that there is at most one G with these properties is a straight-
forward induction on the inductive structure. If G and G′ are two such functions
then the induction hypothesis is that G(c) = G′(c). The base case holds because
G(c) = G0(c) = G′(c) for all c ∈ B, and the induction step holds because if
G(ai) = G′(ai) for all i then

G(F (a0, . . . ak−1)) = HF (a0, . . . ak−1, G(a0), . . . G(ak−1)) =

HF (a0, . . . ak−1, G
′(a0), . . . G′(ak−1)) = G′(F (a0, . . . ak−1)).

To show that there exists at least one G, we construct a suitable function in
stages, where at stage n we define the function on Cn. We will define functions
Gn : Cn → D by recursion on n, making sure that Gn+1 � Cn = Gn.

Base: G0 is the given function G0 : C → D.
Recursion step: Suppose we defined Gn : Cn → D. We define Gn+1(c) = Gn(c)

for c ∈ Cn. For c ∈ Cn+1\Cn we defineGn+1(c) = HF (a0, . . . ak−1, Gn(a0), . . . Gn(ak−1)).
1

2 SKETCHY NOTES FOR WEEK 2 OF BASIC LOGIC

for the unique function F ∈ K and tuple (a0, . . . ak−1) such that c = F (a0, . . . , ak−1):
this makes sense because (as we observed already) the tuple (a0, . . . ak−1) consists
of elements of Cn, so that the values Gn(ai) were all defined already.

Finally we define G by setting G(c) = Gn(c) for the least n such that c ∈ Cn.
Since we made sure that Gn+1 � Cn = Gn, Gm � Cn = Gn for all m ≥ n, and so
easily G(c) = Gn(c) for every n such that c ∈ Cn.

Now we verify that this G works. The proof is an easy induction on n, where
the induction hypothesis states that G(c) satisfies the defining properties for all
c ∈ Cn.

Base case: n = 0. When c ∈ B = C0, we defined G(c) = G0(c).
Successor step: Suppose that G(c) is as required for all c ∈ Cn. Let c ∈ Cn+1.

If c ∈ Cn then there is nothing to do. If c ∈ Cn+1 \Cn then c = F (a0, . . . ak−1) for
F ∈ K and ai ∈ Cn, and we have

G(c) = Gn+1(c) = HF (a0, . . . ak−1, Gn(a0), . . . Gn(ak−1)) =

HF (a0, . . . ak−1, G(a0), . . . G(ak−1))

�

Remark: We worded the statement of the Theorem to make the recursive char-
acter of the definition rather explicit. An equivalent formulation (closer to what we
use in practice) says:
Given G0 and HF for F ∈ K as above, there is a unique G : C → D satisfying the
equations:

• G0 = G � B.
• G(F (a0, . . . ak−1)) = HF (a0, . . . ak−1, G(a0), . . . G(ak−1)) for all F ∈ K and

all (a0, . . . ak−1) ∈ dom(F) ∩ Ck.

Now for a blizzard of definitions.
We fix a set {T, F} of truth values and define various operations on the set of

truth values.

• ¬F = T , ¬T = F .
• T ∨ T = T ∨ F = F ∨ T = T , F ∨ F = F .
• F ∧ F = F ∧ T = T ∧ F = F , T ∧ T = T .
• T → T = F → T = F → F = T , T → F = F .

It is important to understand that these are finitary functions, and are not the
same as the corresponding symbols in the alphabet for propositional logic: the
symbols denote the functions, in rather the same way that “James Cummings” is
a string of 14 ascii symbols but denotes a math professor.

Definition 1. A truth assignment is a function f from {An : n ∈ N} to {T, F}.

To each truth assignment f we will associate a function F from the set of wff’s
to {T, F} by the following recursive definition:

(1) F (An) = f(An).
(2) F ((α ∧ β)) = F (α) ∧ F (β).
(3) F ((α ∨ β)) = F (α) ∨ F (β).
(4) F ((α→ β)) = F (α)→ F (β).
(5) F ((¬α)) = ¬F (α).

Note: In class we used f for the original truth assignment and F for the induced
function from wff’s to truth values to underline the point that they are distinct

SKETCHY NOTES FOR WEEK 2 OF BASIC LOGIC 3

functions. In practice we usually just use the same symbol for both of them, and
(unlike in class) we have followed this convention below.

Definition 2. (1) A theory is a set of wff’s.
(2) If f is a truth assignment and α is a wff then f satisfies α (f |= α) if and

only if f(α) = T .
(3) If S is a theory and f is a truth assignment, then f satisfies S (f |= S) if

and only if f |= α for all α ∈ S.
(4) If S is a theory and α is a wff, then S entails α (S |= α) if and only if for

every truth assignment f , if f |= S then f |= α.
(5) If S and S′ are theories then S entails S′ (S |= S′) if and only if S |= α

for all α ∈ S′.
(6) A wff α is a syllogism if and only if f |= α for every truth assignment f .

Example: A0 ∨ ¬A0 is a syllogism, {A0, A0 → A1} entails A1.
Note: In class we started a discussion of proofs, but since it was informal and

incomplete I will leave that to next week’s notes.

