
SKETCHY NOTES FOR WEEK 1 OF BASIC LOGIC

A function F is n-ary (has arity n) if its domain is a set of n-tuples and finitary
if it is n-ary for some n.

If F is n-ary and C is a set, we say that C is closed under F if F (a0, . . . an−1) ∈ C
for all n-tuples (a0, . . . an−1) ∈ Cn ∩ dom(F ).

A basic idea in the course is to form the closure of a set B under functions in
some set K of finitary functions, that is to say the least set that contains B and is
closed under all functions F in K.

Theorem 1. If B is a set and K is a set of finitary functions then there is a unique
set C such that:

(1) B ⊆ C.
(2) C is closed under F for all F ∈ K.
(3) For any set C ′ with B ⊆ C ′ and C ′ closed under F for all F ∈ K, we have

C ⊆ C ′.

Proof. We show first that there is such a set C and then argue that it is unique.
To construct a suitable C, let C0 = B and then define

Cn+1 = Cn ∪ {F (a0, . . . ak−1) : F ∈ K is k-ary and (a0, . . . ak−1) ∈ Ck
n ∩ dom(F )}.

Then we set C =
⋃

n∈N Cn.
Clearly B = C0 ⊆ C. To prove closure we use the fact that the sets Cn are

increasing in the sense that m < n implies Cm ⊆ Cn. So suppose that F ∈ K is
k-ary and (a0, . . . ak−1) ∈ Ck ∩ dom(F ). For each i < k we choose ni such that
ai ∈ Cni

and then set n∗ = max{a0, . . . ak−1}. Since the Ci’s are increasing all the
ai are in Cn∗ , so that (a0, . . . ak−1) ∈ Ck

n∗∩dom(F ). By definition F (a0, . . . ak−1) ∈
Cn∗+1, so that F (a0, . . . ak−1) ∈ C.

For the last property of C, we assume that B ⊆ C ′ and C ′ is closed under F for
all F ∈ K, and show by induction that Cn ⊆ C ′ for all n. This is easy: C0 = B
gives us the base case and the assumption that C ′ is closed under all F ∈ K gives
us the successor step. Since C =

⋃
n Cn, it follows that Cn ⊆ B.

At this point we have the existence of a suitable C. To show uniqueness suppose
that C0 and C1 both have the properties listed above. Since C1 contains B and is
closed under all F in K, C0 ⊆ C1. Similarly C1 ⊆ C0 and so C1 = C0. �

Definition 1. In the situation of Theorem 1 we write C = C(B,K) and say that
C is the closure of B under K, or that (B,K) is an inductive structure for C.

As the name suggests, inductive structures let us do induction.

Theorem 2. (Induction for inductive structures)
Let (B,K) be an inductive structure for C and suppose that P is a property such

that

(1) P (b) holds for all b ∈ B.
(2) For all F ∈ K and all (a0, . . . ak−1) ∈ Ck ∩ dom(F ), if P (ai) holds for all

i with 0 ≤ i < k then P (F (a0, . . . ak−1)) holds.
1



2 SKETCHY NOTES FOR WEEK 1 OF BASIC LOGIC

Then P (c) holds for all c ∈ C.

Proof. Use the description of C as the union of Cn from the proof of Theorem 1.
An easy induction on n shows that P (c) holds for all c ∈ Cn. �

Proof by induction goes hand-in-hand with definition by recursion. It is natural
to try to define a function H on C(B,K) by specifying H on B and then specifying
H(F (a0, . . . ak−1)) in terms of the ai and H(ai), but this can go wrong in general.
The following definition eliminates the two problems that definition by recursion
on C(B,K) may have.

Definition 2. An inductive structure (B,K) for C is uniquely readable if and only
if:

(1) For all b ∈ B, b 6= F (a0, . . . ak−1) for all F ∈ K and (a0, . . . ak−1) ∈
Ck ∩ dom(F ).

(2) For all c ∈ C \ B, c = F (a0, . . . ak−1) for a unique F ∈ K and a unique
tuple (a0, . . . ak−1) ∈ Ck ∩ dom(F ).

Before stating the general principle of recursion on a uniquely readable structure,
we give a substantive example of such a structure.

We will define the class of wff’s (well formed formulae) of propositional logic.
This is a set of finite strings of symbols from the alphabet

{An : n ∈ N} ∪ {(, )} ∪ {∨,∧,¬,→}
We set up an inductive structure by defining B to be the set of all strings of length
1 of form An, and K = {F∨, F¬, F∧, F→} to be a family of functions for generating
strings: F∨(s, t) = (s∨ t), F∧(s, t) = (s∧ t), F→(s, t) = (s→ t), F¬(s) = (¬s). The
domin of F∨ is the set of all pairs of strings from our alphabet, and similarly for
the others. The set of wff’s is the closure of B under K.

Theorem 3. The inductive structure we just described for the wff’s of propositional
logic is a uniquely readable inductive structure.

Proof. We proceed by a series of easy lemmas, each one is proved by induction on
the inductive structure as in Theorem 2.

Lemma 1. Every wff has an equal number of (’s and )’s.

Lemma 2. Every non-empty initial segment of a wff has strictly more (’s than )’s.

Lemma 3. An inital segment of a wff is not a wff.

Lemma 4. Every wff begins either with An for some n or (.

Now we prove unique readability. It is easy to see that any element An of B is
not in the range of any F ∈ K. If s = (¬t) then s 6= (t′@u′) for wffs t, t′, u′ and
@ ∈ {∧,∨,→}, as the first entry in t′ can’t be ¬. If s = (t@u) = (t′@′u′) for wffs
t, t′, u, u′ and @,@′ ∈ {∧,∨,→}, then each of t and t′ can’t be an initial segment
of the other, so t = t′ from which we see @ = @′ and u = u′. �


