
21-300 F15 HW 1-4 SOLUTIONS

Homework 1

(1) (25 points total) Recall that we defined an inductive structure to generate the wff’s of
propositional logic as follows: The wffs are finite strings of symbols from the alphabet

{An : n ∈ N} ∪ {(, )} ∪ {∨,∧,¬,→}

B is the set of all strings of length 1 of form An, and K = {F∨, F¬, F∧, F→} is a family of
functions for generating strings: F∨(s, t) = (s ∨ t), F∧(s, t) = (s ∧ t), F→(s, t) = (s→ t),

F¬(s) = (¬s). We showed in class that this has unique readability. The set C of wffs is

the closure of B under K.
(a) (10 points) Define a function G : C → N by the following recursion: G(An) = 1 for

all n, G((s∨ t)) = G(s) +G(t), G((s∧ t)) = G(s) +G(t), G((s→ t)) = G(s) +G(t),

G((¬s)) = G(s).
What is G? For full credit your answer should include an inductive proof that your

description of G is correct.

G is the function that returns for each s ∈ C the number of entries in s that are
propositional letters, that is symbols of the form An for some n. To see this we do

a proof by induction on the inductive structure, where the property P (s) we are

proving is “G(s) is the the number of entries in s that are propositional letters”.
Base case: Since G(An) = 1 for all n, the property P (s) for all s ∈ B.

Successor step(s): Officially we need four steps, one for each function, but we just
check F∧. Suppose that P (s) and P (t) hold, that that is s has G(s) propositional

letters and t has G(t) propositional letters. Then (s∧t) has G(s)+G(t) propositional

letters, and by definition G((s ∧ t)) = G(s) +G(t), so that P ((s ∧ t)) holds.
(b) (10 points) Give a recursive definition for each of the following functions on C.

For full credit each answer should include an inductive proof that the definition is

correct.
Note: I just give the inductive definitions, the proofs are similar to the one I just

gave.

(i) The function which returns the length of the string s for each s ∈ C. G(An) =
1 for all n, G((s ∨ t)) = G(s) + G(t) + 3, G((s ∧ t)) = G(s) + G(t) + 3,

G((s→ t)) = G(s) +G(t) + 3, G((¬s)) = G(s) + 3.

(ii) The function which returns the set of propositional letters appearing in s for
each s ∈ C.
G(An) = {An} for all n, G((s ∨ t)) = G(s) ∪ G(t), G((s ∧ t)) = G(s) ∪ G(t),

G((s→ t)) = G(s) ∪G(t), G((¬s)) = G(s).
(c) (5 points) Is it possible to give a recursive definition for the function from C to N

which returns the number of distinct propositional letters appearing in s?
This one is a bit tricky. The official definition of recursion says that we can define

G(F (a0, . . . ak−1)) as HF (a0, . . . ak−1, G(a0), . . . G(ak−1)) for any function HF of
the right type, that is the value of G at F (a0, . . . ak−1) is allowed to depend on the
ai’s as well as the values of G on the ai’s.
So we can write a recursive definition that goes like this: G(An) = 1, G((s ∧ t)) is

the the number of distinct propositional letters appearing in (s ∧ t), and similarly
for the other connectives. It’s a reasonable complaint that this is cheating, and not

really recursive since we ignore the values of G(s) and G(t) completely, but it is a
legal recursive definition.
Suppose we say that a recursive definition is pure if the value of G(F (a0, . . . ak−1))
only depends on the values of G(a0), . . .G(ak−1). The earlier examples in this
question are all pure recursive definitions, and it’s easy to see that the number of

distinct propositional letters appearing in s can’t be computed by a pure recursive
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definition; for example A1 ∧A1 and A1 ∧A2 should get different values even though

A1 and A2 get the same value!

(2) (10 points total) (This exercise is intended to motivate our restriction to finitary functions)
Let X be the set of all subsets of N, let XN be the set of all infinite sequences (xn : n ∈ N)

from X, and let F : XN → X be the function that returns {n : n /∈ xn} on the argument

(xn : n ∈ N).
Given Y ⊆ X we will say that Y is closed under F if F ((yn : n ∈ N)) ∈ Y for all

sequences such that yn ∈ Y for all n.

(a) (3 points) Prove that F ((xn : n ∈ N)) 6= xn.
Two sets are equal if they have the same members. By construction n ∈ F ((xn :

n ∈ N)) ⇐⇒ n /∈ xn, so it is not possible that F ((xn : n ∈ N)) = xn.

(b) (2 points) Prove that no countable set Y ⊆ X is closed under F .
If Y is countable and closed under F then let (xn : n ∈ N) enumerate Y , and use

the previous result to get a contradiction.
(c) (5 points) Let B = {∅} and let Y be such that B ⊆ Y ⊆ X and Y is closed under

F . Prove that Y = X.

We claim first that N ∈ Y . To see this consider the sequence which is constant with
value ∅ at each entry, clearly F returns N on this sequence. Now we claim that every

A ⊆ N is in Y ; to see this define a sequence by xn = ∅ for n ∈ A, xn = N for n /∈ A.

Now n /∈ xn ⇐⇒ xn = ∅ ⇐⇒ n ∈ A, so F returns A on this sequence.
(3) (10 points total) An absent-minded professor messes up the definition of the wff’s of

propositional logic by leaving out all the right parentheses, that is by writing “B is the

set of all strings of length 1 of form An, and K = {F∨, F¬, F∧, F→} is a family of
functions for generating strings: F∨(s, t) = (s ∨ t, F∧(s, t) = (s ∧ t, F→(s, t) = (s → t,

F¬(s) = (¬s.”
Is the resulting inductive structure uniquely readable?
Yes. We will proceed much as we did in class for the inductive structure that generates

the wff’s of propositional logic. Recall that the main point there was that an initial

segment of a wff is not a wff; once we had this it was easy to get unqiue readability, and
the same argument will work here.

For the purposes of this question, let us say that a bff (Bogusly Formed Formula)

is a string generated by the professor’s inductive structure. Given a string s from the
language, let f(s) be the quantity (number of entries in s which are propositional letters)

+ (number of entries which are ¬) - (number which are left parentheses).
Claim one: If s is a bff then f(s) = 1. We prove it by induction as usual. Clearly it

holds for propositional letters. Applying F¬ adds one left parenthesis and one ¬, so if

f(s) = 1 then f((¬s) = 1. Finally applying any of F∧, F∨, F→ adds one left parenthesis
and no ¬’s, so (eg) if f(s) = f(t) = 1 then f((s ∧ t) = f(s) + f(t)− 1 = 1.

Claim two: If s is an initial segment of a bff then f(s) ≤ 0. Again we prove it by

induction on bffs. Clearly it holds for propositional letters. The initial segments of (¬s
have the form empty string, (, or (¬s′ for s′ an initial segment of s so the induction easily

goes through. The initial segments of (eg) (s ∧ t have one of the forms empty string, (,

(s′ for s′ initial in s, (s∧ or (s ∧ t′ for t′ initial in t. Again the induction goes through.
[THERE ARE VARIOUS “INVARIANTS” YOU CAN USE. THIS ONE IS SAM

ZBARSKY’S AND IS MUCH SLICKER THAN ONE I HAD IN MIND]

Homework 2

(1) (40 points total, 10 for each proof) Prove the formulae:

(a) (α→ β)→ ((¬α) ∨ β).
This one is quite tricky. Start by building a proof of (α ∨ (¬α)). We proceed
by contradiction, so we assume the negation ¬(α ∨ (¬α)) and derive contradictory

conclusions.

�α
(α ∨ (¬α))

(∨I)
(¬(α ∨ (¬α)))

(¬α)
(¬I)



21-300 F15 HW 1-4 SOLUTIONS 3

��¬α
(α ∨ (¬α))

(∨I)
(¬(α ∨ (¬α)))

(¬(¬α))
(¬I)

Now we combine and use the not-introduction and contradiction rules.

�α
(α ∨ (¬α))

(∨I)
(((

((((¬(α ∨ (¬α)))

(¬α)
(¬I)

��¬α
(α ∨ (¬α))

(∨I)
(((

((((¬(α ∨ (¬α)))

(¬(¬α))
(¬I)

(¬(¬(α ∨ (¬α))))
(¬I)

(α ∨ (¬α))
(RAA)

It is now straightforward to do a “case analysis” in which we derive the conclusion

with the help of α and then with the help of (¬α). Explicitly we build proofs

α (α→ β)

β
(→ E)

((¬α) ∨ β)
(∨I)

and
(¬α)

((¬α) ∨ β)
(∨I)

Then we combine everything together using the or-elimination rule.

�α
(α ∨ (¬α))

(∨I)
(((

((((¬(α ∨ (¬α)))

(¬α)
(¬I)

��¬α
(α ∨ (¬α))

(∨I)
(((

((((¬(α ∨ (¬α)))

(¬(¬α))
(¬I)

(¬(¬(α ∨ (¬α))))
(¬I)

(α ∨ (¬α))
(RAA)

�α (α→ β)

β
(→ E)

((¬α) ∨ β)
(∨I) ��(¬α)

((¬α) ∨ β)
(∨I)

((¬α) ∨ β)
(∨E)

Finally we do an implication-introduction

�α
(α ∨ (¬α))

(∨I)
(((

((((¬(α ∨ (¬α)))

(¬α)
(¬I)

��¬α
(α ∨ (¬α))

(∨I)
(((

((((¬(α ∨ (¬α)))

(¬(¬α))
(¬I)

(¬(¬(α ∨ (¬α))))
(¬I)

(α ∨ (¬α))
(RAA)

�α ���
�(α→ β)

β
(→ E)

((¬α) ∨ β)
(∨I) ��(¬α)

((¬α) ∨ β)
(∨I)

((¬α) ∨ β)
(∨E)

(α→ β)→ ((¬α) ∨ β)
(→ I)

(b) ((¬α) ∨ β)→ (α→ β).
First we prove β from α and ((¬α) ∨ β).

((¬α) ∨ β)

α ��(¬α)

β
(¬E)

�β
β

∨E

Then we use the implication-introduction rule twice.

���
��

((¬α) ∨ β)
�α ��(¬α)

β
(¬E)

�β
β

∨E

α→ β
(→ I)

((¬α) ∨ β)→ (α→ β)
(→ I)

(c) (α→ β)→ ((¬β)→ (¬α)).

�α ���
�(α→ β)

β
(→ E)

��(¬β)

(¬α)
(¬I)

((¬β)→ (¬α))
(→ I)

(α→ β)→ ((¬β)→ (¬α))
(→ I)
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(d) ((¬β)→ (¬α))→ (α→ β)

�α
��(¬β) ((((

((((¬β)→ (¬α))

(¬α)
(→ I)

(¬(¬β))
(¬I)

β
(RAA)

α→ β
(→ I)

((¬β)→ (¬α))→ (α→ β)
(→ I)

(2) (20 points, 10 for each) Prove the following formulae without using the Contradiction
rule (that is the last rule from class, that lets you take a proof with conclusion ¬¬β and

make a proof with the same hypotheses and conclusion β).

(a) ¬β → ¬¬¬β.

��¬β ��¬¬β
¬¬¬β

(¬I)

¬β → ¬¬¬β
(→ I)

(b) ¬¬¬β → ¬β.

�β ��¬β
¬¬β

(¬I)
���¬¬¬β

¬β
(¬I)

¬¬¬β → ¬β
(→ I)

(3) (10 points) Prove the formula β ∨ γ from the hypotheses α ∨ β, ¬α ∨ γ.

We use the proof of α ∨ ¬α from earlier.

�α
(α ∨ (¬α))

(∨I)
((((

((
(¬(α ∨ (¬α)))

(¬α)
(¬I)

��¬α
(α ∨ (¬α))

(∨I)
((((

((
(¬(α ∨ (¬α)))

(¬(¬α))
(¬I)

(¬(¬(α ∨ (¬α))))
(¬I)

(α ∨ (¬α))
(RAA)

((¬α) ∨ γ)
�α ��(¬α)

γ (¬E)
�γ

γ ∨E

β ∨ γ
(∨I)

(α ∨ β)
�α ��(¬α)

β
(¬E)

�β
β

∨E

β ∨ γ
(∨I)

β ∨ γ
(∨E)

(4) (10 points) A consistent theory Γ is said to be maximally consistent if there no consistent

∆ with Γ ( ∆. Prove that a maximally consistent theory is deductively closed. Hint:

Suppose it isn’t, what would be a natural thing to try adding?
Let Γ ` δ. We claim that Γ ∪ {δ} is consistent; if not then easily (apply not-

introduction) Γ ` ¬δ, contradicting the consistency of Γ. Now maximality implies that

δ ∈ Γ.

Homework 3

(1) (10 points total) Recall that the deductive closure of a set Γ of propositional formulae
is {δ : Γ ` δ}. A set is deductively closed if and only if it is equal to its own deductive

closure. Use the Soundness and Completeness theorems to give a short proof that for
any Γ the deductive closure of Γ is deductively closed (if your proof uses induction or is

more than ten lines long then it is probably too long)

Let δ be in the deductive closure of the deductive closure of Γ, and fix a proof P of δ
from hypotheses in the deductive closure of Γ. By Soundness any truth assignment that

satisfies Γ satisfies the hypotheses of P , and hence by Soundness satisfies δ. So Γ |= δ

and thus by Completeness Γ ` δ.
(2) (10 points total) Prove that no finite consistent set of propositional formulae is complete.

Let F be a finite consistent set and let n be largest such that An appears in F .

Since F is consistent, by Completeness there is some truth assignment f that satisfies
F . Changing the value of f(An+1) we obtain another assignment satisfying F , so by

Soundness F can neither prove An nor prove ¬An.

(3) (10 points total) Let Γ be a set of propositional formulae. Prove that if every finite subset
of Γ is consistent, then Γ is consistent.

Proofs are finite, so if Γ is inconsistent then a finite subset must be inconsistent.
(4) (20 points total) Two formulae of propositional logic are equivalent if they are satisfied

by exactly the same truth assignments.
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(a) (10 points) Prove that every propositional formula is equivalent to one which only

uses ¬ and ∧.

(b) (10 points) Prove that not every propositional formula is equivalent to one which
only uses →.

It will suffice to express the other connectives, then an easy induction on propositional

formulae will prove the result. α∨β is equivalent to ¬(¬α∧¬β), and α→ β is equivalent
to ¬α ∨ β, which is equivalent to ¬(α ∧ ¬β).

If a formula contains only → connectives then it is always true when every variable is

set to true.
(5) (15 points total) Consider a signature for a first order language which has only three

symbols, a binary function symbol ◦, a constant symbol e, and a binary relation symbol

≡ (whose intended interpretation is the equality relation). Write down sentences which
express:

(a) (5 points) ◦ is commutative.
(b) (5 points) ◦ is associative.

(c) (5 points) e is a two-sided identity element for ◦.
∀x ∀y x ◦ y ≡ y ◦ x, or to be really picky
(∀x0 (∀x1 ≡ (◦(x0, x1), ◦(x1, x0)))).

∀x ∀y ∀z (x ◦ y) ◦ z ≡ x ◦ (y ◦ z).
∀x (x ◦ e ≡ x) ∧ (e ◦ x ≡ x).

Homework 4

(1) (10 points) Prove by induction on the term ρ that if x and y are distinct variables and σ
and τ are closed terms, then ρ[x/σ][y/τ ] = ρ[y/τ ][x/σ].

Base case(s): If ρ is a constant c then c[x/σ][y/τ ] = c = c[y/τ ][x/σ].
If ρ is x then x[x/σ][y/τ ] = σ[y/τ ] = σ as σ is closed. Now x[y/τ ][x/σ] = x[x/σ] = σ,

using that x and y are distinct in the first step.

A similar argument works if ρ is y.
Finally if ρ is a variable symbol z which is not x or y, then z[x/σ][y/τ ] = z =

z[y/τ ][x/σ].

Induction step(s): Easy using the recursive definition of substitution.
(2) (30 pts, 5 per proof) Since we are using the quantifier rules which have tricky restrictions,

we will build proofs in stages making sure we obey the restrictions at each step.

(a) ∃x φ→ ¬∀x ¬φ.
Start with

∀x ¬φ
¬φ

(∀E)

Then build

φ

���∀x ¬φ
¬φ

(∀E)

¬∀x ¬φ
(¬I)

Since x only appears free in the hypothesis φ and not in the conclusion, we may use
the ∃E rule to get

∃x φ
�φ
���∀x ¬φ
¬φ

(∀E)

¬∀x ¬φ
(¬I)

¬∀x ¬φ
(∃E)

and then do → I to finish

��∃x φ
�φ
���∀x ¬φ
¬φ

(∀E)

¬∀x ¬φ
(¬I)

¬∀x ¬φ
(∃E)

∃x φ→ ¬∀x ¬φ
(→ I)

(b) ¬∀x ¬φ→ ∃x φ.
Start with

φ

∃x φ
(∃I)
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Then

�φ
∃x φ

(∃I)
¬∃x φ

¬φ
(¬I)

Since there are no free x’s in the hypotheses,

�φ
∃x φ

(∃I)
¬∃x φ

¬φ
(¬I)

∀x ¬φ
(∀I)

Now we just use a couple of propositional rules:

�φ
∃x φ

(∃I)
���¬∃x φ

¬φ
(¬I)

∀x ¬φ
(∀I)

���
�¬∀x ¬φ

¬¬∃x φ
(¬I)

∃x φ
(RAA)

¬∀x ¬φ→ ∃x φ
(→ I)

(c) ∀x φ→ ¬∃x ¬φ.

Start with an easy application of ∀E,

∀x φ
φ

(∀E)

Then do ¬I to get

��∀x φ
φ

(∀E)
¬φ

¬∀x φ
(¬I)

At this point we can make an application of ∃E with ∃x ¬φ,

∃x ¬φ

��∀x φ
φ

(∀E)
��¬φ

¬∀x φ
(¬I)

¬∀x φ
(∃E)

This was legal because x was not free in the conclusion and only appeared in ¬φ
among the hypotheses.

Now we just use the propositional rules ¬I and → I to finish

��∀x φ
���∃x ¬φ

��∀x φ
φ

(∀E)
��¬φ

¬∀x φ
(¬I)

¬∀x φ
(∃E)

¬∃x ¬φ
(¬I)

∀x φ→ ¬∃x ¬φ
(→ I)

(d) ¬∃x ¬φ→ ∀x φ.

Start with an easy application of ∃I,
¬φ
∃x ¬φ

(∃I)

then do a ¬I followed by a RAA to get

¬∃x ¬φ
��¬φ
∃x ¬φ

(∃I)

¬¬φ
(¬I)

φ
(RAA)
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At this point x is not free in the hypotheses so we may do ∀I to get

¬∃x ¬φ
��¬φ
∃x ¬φ

(∃I)

¬¬φ
(¬I)

φ
(RAA)

∀x φ
(∀I)

and then finish with a → I to get

���
�¬∃x ¬φ

��¬φ
∃x ¬φ

(∃I)

¬¬φ
(¬I)

φ
(RAA)

∀x φ
(∀I)

¬∃x ¬φ→ ∀x φ
(→ I)

(e) ∃x (φ ∨ ψ)→ (∃x φ ∨ ∃x ψ)

Build (easy) the proofs

φ

∃x φ
(∃I)

∃x φ ∨ ∃x ψ
(∨I)

and
ψ

∃x ψ
(∃I)

∃x φ ∨ ∃x ψ
(∨I)

Then use the propositional ∨E rule to get

φ ∨ ψ

�φ
∃x φ

(∃I)

∃x φ ∨ ∃x ψ
(∨I)

�ψ
∃x ψ

(∃I)

∃x φ ∨ ∃x ψ
(∨I)

∃x φ ∨ ∃x ψ
(∨E)

Now we can apply the ∃E rule:

∃x (φ ∨ ψ)

���φ ∨ ψ

�φ
∃x φ

(∃I)

∃x φ ∨ ∃x ψ
(∨I)

�ψ
∃x ψ

(∃I)

∃x φ ∨ ∃x ψ
(∨I)

∃x φ ∨ ∃x ψ
(∨E)

∃x φ ∨ ∃x ψ
(∃E)

and finish with the → I rule

��
���∃x (φ ∨ ψ)

���φ ∨ ψ

�φ
∃x φ

(∃I)

∃x φ ∨ ∃x ψ
(∨I)

�ψ
∃x ψ

(∃I)

∃x φ ∨ ∃x ψ
(∨I)

∃x φ ∨ ∃x ψ
(∨E)

∃x φ ∨ ∃x ψ
(∃E)

∃x (φ ∨ ψ)→ (∃x φ ∨ ∃x ψ)
(→ I)

(f) (∃x φ ∨ ∃x ψ)→ ∃x (φ ∨ ψ)

Start with the trivial propositional proofs

φ

φ ∨ ψ
(∨I)

,

ψ

φ ∨ ψ
(∨I)

Since x is always permitted for x we may use ∃I to build

φ

φ ∨ ψ
(∨I)

∃x (φ ∨ ψ)
(∃I)

,

ψ

φ ∨ ψ
(∨I)

∃x (φ ∨ ψ)
(∃I)
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Since the only free appearance of x in the hypotheses of the first proof is in φ, and

x is not free in the conclusion we may use ∃E and build a proof

∃x φ

�φ
φ ∨ ψ

(∨I)

∃x (φ ∨ ψ)
(∃I)

∃x (φ ∨ ψ)
(∃E)

,

and similarly

∃x ψ

�ψ
φ ∨ ψ

(∨I)

∃x (φ ∨ ψ)
(∃I)

∃x (φ ∨ ψ)
(∃E)

Now we use the propositional ∨E and → I rules to finish.

((((
(∃x φ ∨ ∃x ψ
��∃x φ

�φ
φ ∨ ψ

(∨I)

∃x (φ ∨ ψ)
(∃I)

∃x (φ ∨ ψ)
(∃E) �

�∃x ψ

�ψ
φ ∨ ψ

(∨I)

∃x (φ ∨ ψ)
(∃I)

∃x (φ ∨ ψ)
(∃E)

∃x (φ ∨ ψ)
(∨E)

(∃x φ ∨ ∃x ψ)→ ∃x (φ ∨ ψ)
(→ I)

(3) (10 points) Let φ be a formula in some first order language, and suppose that φ has

exactly two free variables x and y. Let M be a structure for the language. Prove that
M |= ∀x ∀y φ if and only if M |= ∀y ∀x φ.

M |= ∀x ∀y φ if and only if for all a in M M |= ∀y φ[x/ca] if and only if for all

a, b ∈ M M |= φ[x/ca][y/cb]. Similarly M |= ∀y ∀x φ if and only if for all a, b ∈ M
M |= φ[y/cb][x/ca].

So we will be done once we can prove that φ[x/ca][y/cb] = φ[y/cb][x/ca]. In fact

we may as well prove a version of Q1 for formulae, which is a straightforward induction
whose base case (atomic formulae) is handled by Q1.


