$21-300 \ F15 \ HW \ 7$

IMPORTANT: PLEASE EMAIL COMPLETED HOMEWORKS TO:

lserafin.algebra@gmail.com

(1) Let \mathcal{L} be some FOL. A sentence in \mathcal{L} is said to be a $\forall \exists$ sentence if it has the form $\forall y_1 \ldots \forall y_m \exists z_1 \ldots \exists z_n \psi$ where ψ is quantifier free. Suppose that T is a set of $\forall \exists$ sentences and that $\langle \mathcal{M}_n : n \in \mathbb{N} \rangle$ is a

sequence of structures, such that $\mathcal{M}_n \models T$ and \mathcal{M}_n is a substructure of \mathcal{M}_{n+1} . Letting $M = \bigcup_n M_n$, we define an \mathcal{L} -structure \mathcal{M} with underlying set M in the natural way. Prove that $\mathcal{M} \models T$.

(2) Recall that \mathcal{M} is an elementary substructure of \mathcal{N} when \mathcal{M} is a substructure of \mathcal{N} , and $\mathcal{M} \models \phi(\vec{m}) \iff \mathcal{N} \models \phi(\vec{m})$ for all formulae $\phi(\vec{x})$ and all tuples \vec{m} of elements of \mathcal{M} .

Let $\langle \mathcal{M}_n : n \in \mathbb{N} \rangle$ be a sequence of \mathcal{L} -structures, such that \mathcal{M}_n is an elementary substructure of \mathcal{M}_{n+1} . Letting $M = \bigcup_n M_n$, we define an \mathcal{L} -structure \mathcal{M} with underlying set M in the natural way. Prove that \mathcal{M}_n is an elementary substructure of \mathcal{M} for all n.

Hint: Prove by induction on ϕ that for all n and all \vec{m} from M_n , $\mathcal{M}_n \models \phi(\vec{m}) \iff \mathcal{M} \models \phi(\vec{m})$.

(3) Let \mathcal{L} be a countable FOL, let \mathcal{M} be an infinite \mathcal{L} -structure and let Y be any set. Prove that there exists \mathcal{N} such that \mathcal{M} is an elementary substructure of \mathcal{N} and there is an injective function from Y to N.

Hint: Expand the language with constants c_a for $a \in M$ and d_y for $y \in Y$. Show that the theory $S \cup T$ is consistent where S is the complete diagram of \mathcal{M} and T is the set of formulae $d_y \neq d_{y'}$ for $y \neq y'$.