21-300 F15 HW 6

IMPORTANT: PLEASE EMAIL COMPLETED HOMEWORKS TO:

lserafin.algebra@gmail.com

(1) Let \mathcal{M} be a substructure of \mathcal{N} . Suppose that for every formula $\psi(z, y_1, \ldots, y_n)$ and all $a_1, \ldots, a_n \in \mathcal{M}$, if there is $b \in \mathcal{N}$ such that $\mathcal{N} \models \psi(b, a_1, \ldots, a_n)$ then there is $a \in \mathcal{M}$ such that $\mathcal{N} \models \psi(a, a_1, \ldots, a_n)$.

Prove that \mathcal{M} is an elementary substructure of \mathcal{N} , that is to say for all $\phi(z_1, \ldots z_n)$ and all $a_1, \ldots a_n \in \mathcal{M}$, $\mathcal{M} \models \phi(a_1, \ldots a_n) \iff \mathcal{N} \models \phi(a_1, \ldots a_n)$.

Hint: You know from the midterm (and may assume here) that the conclusion is true for all quantifier free formulae ϕ . Use the assumption to power an induction. Be careful, the conclusion talks about satisfaction in \mathcal{M} and \mathcal{N} but the assumption only mentions satisfaction in \mathcal{N} .

(2) Let \mathcal{L} be a language with constant symbols 0 and 1, binary function symbols +, \times , pow (for power) and binary relation symbols \equiv (the equality symbol) and <. In a slight abuse of notation, let \mathbb{R} be the \mathcal{L} -structure whose underlying set is the real numbers in which each symbol is given the natural interpretation; $pow^{\mathbb{R}}$ is the function which takes (x, y) to x^y when x > 0 and to zero otherwise.

Let T be the complete diagram of \mathbb{R} , that is the set of all sentences of the expanded language which are true in \mathbb{R} .

- (a) Let c be a new constant and let T^* be the theory $T \cup \{c_0 < c < c_r : r \in \mathbb{R}, r > 0\}$. Prove that T^* is consistent.
- (b) Let \mathbb{R}^* be a model of T^* , and (in another abuse of notation) identify the real number r with the interpretation of c_r in \mathbb{R}^* . Let d be the interpretation of c in \mathbb{R}^* .
 - (i) Prove that in \mathbb{R}^* there is a unique element d' such that $d \times d' = 1$.
 - (ii) Prove that in \mathbb{R}^* , d' > n for every natural number n.
 - (iii) Prove that in \mathbb{R}^* there is an element e such that $0 < e < d^n$ for every natural number n.
- (3) Let ϕ_n be a sentence in the language of graphs expressing "for every pair (A, B) of sets of vertices with $A \cap B = \emptyset$ and |A| = |B| = n there is a vertex $v \notin A \cup B$ such that vEw for all $w \in A$ and $\neg vEw$ for all $w \in B$ ". Let $T^* = T_{graphs} \cup \{\phi_n : n > 0\}.$
 - (a) Prove that T^* has at least one countably infinite model (harder than it looks, try making a model where the underlying set is \mathbb{N} using a listing of all pairs (A, B) of disjoint subsets of \mathbb{N} which have the same size).
 - (b) Prove that any two countably infinite models of T^* are isomorphic. Hint: back and forth.
- (4) Let T be a theory and let $T \vdash \psi$, where ψ is a quantifier-free sentence containing some constant symbols $c_1, \ldots c_n$ that are distinct and do not appear in T. Prove that $T \vdash \forall y_1 \ldots \forall y_n \ \psi'$, where $y_1, \ldots y_n$ are distinct

variable symbols not appearing in ψ and ψ' is the result of replacing c_i by y_i for each *i*.

- (5) Let T be a theory in a first order language \mathcal{L} , and let T_{\forall} be the set of universal sentences ψ of \mathcal{L} such that $T \vdash \psi$ (a sentence is *universal* if it has the form $\forall y_1 \ldots \forall y_n \psi(y_1, \ldots y_n)$ where ψ is quantifier-free). Prove that if $\mathcal{N} \models T$ and \mathcal{M} is a substructure of \mathcal{N} then $\mathcal{M} \models T_{\forall}$.
- (6) Let T be a theory and let $\mathcal{M} \models T_{\forall}$. Let $T^* = T \cup D$ where D is the "atomic diagram" of \mathcal{M} , that is the set of all atomic sentences ψ in the expanded langauge for \mathcal{M} such that $\mathcal{M} \models \psi$.

Prove that T^* is consistent. Hint: If not then T proves the negation of a finite conjunction of elements of D. Now use a previous question.

Prove there is a structure \mathcal{N} such that $\mathcal{N} \models T$ and \mathcal{M} is a substructure of \mathcal{N} .