
21-300 F15 HW 5-6-7 SOLUTIONS

Homework 5

(1) (20 points total) Let T be a first-order theory in some language L, let φ
be a formula with x as its only free variable. Use the Completeness and
Soundness theorems to show that
(a) (10 points) If T ` φ[x/c] where c is a constant symbol not appearing

in T or φ, then T ` ∀x φ.
(b) (10 points) If T ∪ {φ[x/c]} ` ψ, where c is a constant symbol not

appearing in T ∪ {φ, ψ}, then T ∪ {∃x φ} ` ψ.
NOTE: You can do this one by direct manipulation of proofs, replacing

c by a suitable variable symbol. This is OK as long as you are careful.
The key points are that by completeness and soundness, plus considera-

tions about reducts and expansions:
• T ` ψ if and only if T |= ψ.
• We do not need to be careful about exactly which language we are

working in when we write T ` ψ, as long as the set of formulae of the
language contains T ∪ {ψ}.

For the first part, suppose that T ` φ[x/c] with c not appearing in T
or φ, and note that since c does not appear in φ every appearance of c in
φ[x/c] corresponds to an appearance of x in φ.

We want to show that T ` ∀x φ, and it will be enough to show that
T |= ∀x φ.

By hypothesis: wheneverM is a structure for a language whose formulae
include T ∪{φ[x/c]}, andM |= T , thenM |= φ[x/c]. The second key point
is that since c does not appear in T , we can vary the interpretation of c
and still obtain a model of T .

Since c has no appearances in φ, it follows that if M |= T then M |=
φ[x/ca] for every a ∈M , that is M |= ∀x φ.

The argument for the second part is quite similar. LetM |= T ∪{∃x φ}.
We may as well assume thatM is a structure for a language that does not
include c, and then expand it to a structure for a language with c where
c is interpreted as some a such that M |= φ[x/ca]. Then M |= φ[x/c], so
M |= ψ and we are done.

(2) (25 points total) Let M and N be structures for some first-order language
L with underlying sets M and N respectively. A function f : M −→ N is
called a homomorphism fromM to N if
(a) f(cM) = cN for all constant symbols c.
(b) For every relation symbol R with arity k and every a1, . . . ak ∈ M ,

RM(a1, . . . ak) =⇒ RN (f(a1), . . . f(ak)).
(c) For every function symbol G with arity l and every a1, . . . al ∈ M ,

f(GM(a1, . . . al)) = GN (f(a1), . . . f(al)).
1
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Let f be a homomorphism from M to N . For each closed term t of the
expanded language forM, let t̄ be the closed term of the expanded language
for N obtained by replacing each constant ca by the constant cf(a).

(a) (10 points) Prove that f(tM) = t̄N for each closed term t of the ex-
panded language for M.
If t is a constant symbol c of the original language, t = t̄ = c. f(cM) =
cN by the definition of homomorphism.
If t is a constant symbol ca for a ∈ M , then t̄ = cf(a), and f(cMa ) =

f(a) = cNf(a).

If t is g(t1, . . . tm) then t̄ is g(t̄1, . . . t̄m), and

f(gM(tM1 , . . . tMm )) = gN (f(tM1 ), . . . f(tMm )) = gN (tN1 , . . . t
N
m)

by induction and the definition of homomorphism.
(b) (15 points) Prove (by induction on φ) that if φ(y1, . . . yn) is a formula

of L involving only the connectives ∧ and ∨ and only the quanti-
fier ∃, then for all a1 . . . an ∈ M M |= φ(a1, . . . an) =⇒ N |=
φ(f(a1), . . . f(an)).
Let φ be an atomic formula R(t1, . . . tm) and let y1, . . . yn be the vari-
ables appearing in the terms ti. Let T be the substitution which
replaces yi by cai

. Now if M |= φ(a1, . . . an), then by definition
RM((t1[T ])M, . . . (tm[T ])M). Since f is a homomorphism, it follows

from the last part that RN (t1[T ]
N
, . . . tm[T ]

N
).

Now ti[T ] = ti[U ], where U is the substitution which replaces yi by
cf(ai), so RN ((t1[U ])N , . . . (tm[U ])N ), so N |= φ(f(a1), . . . f(an)).
The inductions steps for ∧, ∨ are easy.
Luke: 4 points for this bit.
Finally, suppose φ is ∃z ψ(z, y1, . . . ym) andM |= φ(a1, . . . am), so that
by definitionM |= ψ(b, a1, . . . am). By inductionN |= ψ(f(b), f(a1), . . . f(am)),
so that by definition N |= φ(f(a1), . . . f(am)).
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Homework 6

(1) (15 points total) Let M be a substructure of N . Suppose that for every
formula ψ(z, y1, . . . yn) and all a1, . . . an ∈ M , if there is b ∈ N such that
N |= ψ(b, a1, . . . an) then there is a ∈M such that N |= ψ(a, a1, . . . an).

Prove that M is an elementary substructure of N , that is to say for
all φ(z1, . . . zn) and all a1, . . . an ∈ M , M |= φ(a1, . . . an) ⇐⇒ N |=
φ(a1, . . . an).

Hint: You know from the midterm (and may assume here) that the
conclusion is true for all quantifier free formulae φ. Use the assumption to
power an induction. Be careful, the conclusion talks about satisfaction in
M and N but the assumption only mentions satisfaction in N .

Taking the hint, we proceed by induction on the construction of the for-
mula φ. The connective cases are easy, so we concentrate on the quantifier
cases.
∃ case: φ is of the form ∃y ψ(y, z1, . . . zn), where the IH tells us that for

all b, a1, . . . an ∈M , M |= ψ(b, a1, . . . an) ⇐⇒ N |= ψ(b, a1, . . . an).
If M |= φ(a1, . . . an), then by definition M |= ψ(b, a1, . . . an) for some

b ∈ M , by the IH N |= ψ(b, a1, . . . an), and by definition again N |=
φ(a1, . . . an). If N |= φ(a1, . . . an), then by definition N |= ψ(c, a1, . . . an)
for some c ∈ N , by the assumption N |= ψ(b, a1, . . . an) for some b ∈M , by
the IH M |= ψ(b, a1, . . . an), and finally by definition M |= φ(a1, . . . an).
∀ case: φ is of the form ∀y ψ(y, z1, . . . zn), where again the IH tells us that

for all b, a1, . . . an ∈M , M |= ψ(b, a1, . . . an) ⇐⇒ N |= ψ(b, a1, . . . an).
Notice that M |= ¬ψ(b, a1, . . . an) ⇐⇒ N |= ¬ψ(b, a1, . . . an). It

suffices to show that M |= ¬φ(a1, . . . an) ⇐⇒ N |= ¬φ(a1, . . . an), and
this is equivalent to showing that M |= ∃y ¬ψ(y, a1, . . . an) ⇐⇒ N |=
∃y ¬ψ(y, a1, . . . an). Now proceed as in the ∃ case.

(2) (20 points total) Let L be a language with constant symbols 0 and 1, binary
function symbols +, ×, pow (for power) and binary relation symbols ≡
(the equality symbol) and <. In a slight abuse of notation, let R be the
L-structure whose underlying set is the real numbers in which each symbol
is given the natural interpretation; powR is the function which takes (x, y)
to xy when x > 0 and to zero otherwise.

Let T be the complete diagram of R, that is the set of all sentences of
the expanded language which are true in R.
(a) (5 points) Let c be a new constant and let T ∗ be the theory T ∪{c0 <

c < cr : r ∈ R, r > 0}. Prove that T ∗ is consistent.
ETS that for any finite set A of positive reals, T ∪{c0 < c < cr : r ∈ A}
is consistent. This is easy, interpret the symbols of T inside R in the
standard way and interpret c as something between 0 and min(A).

(b) Let R∗ be a model of T ∗, and (in another abuse of notation) identify
the real number r with the interpretation of cr in R∗. Let d be the
interpretation of c in R∗.

(i) (5 points) Prove that in R∗ there is a unique element d′ such
that d× d′ = 1.
Let ψ be the sentence expressing “every element greater than
zero has a unique multiplicative inverse”. ψ is true in R, hence
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ψ ∈ T , hence ψ ∈ T ∗. So ψ is true in R∗, d > 0 in this structure,
and hence there is a unique d′ as required.

(ii) (5 points) Prove that in R∗, d′ > n for every natural number n.
The sentence expressing that “for all positive x and y, x > y
implies 1/x < 1/y” is true in R and hence is true in R∗. Of
course there is no division symbol in the language, but we can
express statements about the unique multiplicative inverse of an
element. By construction 0 < d < 1/n for all n, so n < 1/d = d′.

(iii) (5 points) Prove that in R∗ there is an element e such that
0 < e < dn for every natural number n.
Consider e = d1/d, and argue as above that properties of the
ordering and the power function justify the conclusion.

(3) (20 points) Let φn be a sentence in the language of graphs expressing “for
every pair (A,B) of sets of vertices with A ∩ B = ∅ and |A| = |B| = n
there is a vertex v /∈ A ∪B such that vEw for all w ∈ A and ¬vEw for all
w ∈ B”. Let T ∗ = Tgraphs ∪ {φn : n > 0}.
(a) (10 points) Prove that T ∗ has at least one countably infinite model

(harder than it looks, try making a model where the underlying set is
N using a listing of all pairs (A,B) of disjoint subsets of N which have
the same size).
We will build the graph in stages, at each stage we will label various
unordered pairs of integers as either “edges” or “nonedges”. Each
stage will only label finitely many pairs, and we will arrange that the
sets of pairs considered at different stages are disjoint: this will make
sure that once we handle a pair it stays handled at subsequent stages,
Taking the hint, enumerate all relevant pairs as (Ai, Bi) for i ∈ N.
We will associate to each pair a “witnessing vertex” wi, making sure
that max(Ai ∪ Bi) < wi and wi is strictly increasing with i. At stage
i, mark all pairs {a,wi} for a ∈ Ai as edges and all pairs {b, wi} for
b ∈ Bi as non-edges.
Sophisticate’s alternative, need some probability theory to see this
works: for each i 6= j, toss a fair coin to determine if i should be joined
to j. For each pair A,B there is ε > 0 such that for each w /∈ A∪B, the
probability that w “works” for A and B is ε. Since there are infinitely
many w’s and the coin tosses are independent, almost surely some w
works for A and B. Since there are only countably many pairs, almost
surely the random graph we build is as required.

(b) Prove that any two countably infinite models of T ∗ are isomorphic.
Hint: back and forth.
Let X and Y be countably infinite models of T ∗. We enumerate them
and build an isomorphism basically as we did for DLOWE’s. At stage
i we have a “partial isomorphism” gi with domain and range of size
i + 1. Suppose that i is even (so it is a “forth” stage) and x′ is least
in the enumeration of X such that x′ /∈ dom(gi). Let A∗ = {g(x) :
x is joined to x′ in X } andB∗ = {g(x) : x is not joined to x′ in X }.

use the fact that Y is a model of T to show there is y′ joined to all
elements of A∗ and no elements of B∗, and let gi+1(x′) be the least
such y′. Use a similar argument for the “back” stages.
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(4) (10 points) Let T be a theory and let T ` ψ, where ψ is a quantifier-free
sentence containing some constant symbols c1, . . . cn that are distinct and
do not appear in T . Prove that T ` ∀y1 . . . ∀yn ψ′, where y1, . . . yn are
distinct variable symbols not appearing in ψ and ψ′ is the result of replacing
ci by yi for each i.

It’s a routine application of Completeness. We argue that T |= ∀y1 . . . ∀yn ψ′,
which amounts to showing that ifM |= T thenM |= ψ′(~a) for all ~a ∈Mn.
To see this just expandM to a structure which interprets ci as ai, and use
T |= ψ.

(5) (5 points) Let T be a theory in a first order language L, and let T∀ be the
set of universal sentences ψ of L such that T ` ψ (a sentence is universal
if it has the form ∀y1 . . . ∀yn ψ(y1, . . . yn) where ψ is quantifier-free). Prove
that if N |= T and M is a substructure of N then M |= T∀.

Immediate from a question on the midterm.
(6) (20 points) Let T be a theory and let M |= T∀. Let T ∗ = T ∪D where D

is the “atomic diagram” of M, that is the set of all atomic sentences ψ in
the expanded language for M such that M |= ψ.

Prove that T ∗ is consistent. Hint: If not then T proves the negation of
a finite conjunction of elements of D. Now use a previous question.

Taking the hint, if T is inconsistent then T ` ¬Ψ where Ψ is a finite
disjunction of atomic sentences of the expanded language, each one true in
M. Let a1, . . . an be the elements of M such that the corresponding con-
stants appear in Ψ. Since the symbols cai

don’t appear in T , by a preceding
question T ` ∀y1 . . . ∀yn ¬Ψ′ where Ψ′ is obtained from Ψ by replacing cai

by yi. So ∀y1 . . . ∀yn ¬Ψ′ ∈ T∀ and hence M |= ∀y1 . . . ∀yn ¬Ψ′, which is
a contradiction because M |= Ψ′(a1, . . . an).

Prove there is a structure N such that N |= T and M is a substructure
of N .

A model of T ∗ is a model of T which contains an isomoprhic copy ofM.
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Homework 7

(1) (15 points total) Let L be some FOL. A sentence in L is said to be a ∀∃
sentence if it has the form ∀y1 . . . ∀ym ∃z1 . . . ∃zn ψ where ψ is quantifier
free.

Suppose that T is a set of ∀∃ sentences and that 〈Mn : n ∈ N〉 is a
sequence of structures, such that Mn |= T and Mn is a substructure of
Mn+1. Letting M =

⋃
nMn, we define an L-structure M with underlying

set M in the natural way. Prove that M |= T .
For each n,Mn is a substructure ofM, so thatMn |= ψ(~a) ⇐⇒ M |=

ψ(~a) for all quantifier-free ψ and all ~a ∈Mn.
Now let φ be a formula ∀y1 . . . ∀ym ∃z1 . . . ∃zn ψ appearing in T , for

some qf ψ. To show that M |= φ, we fix some ~a ∈ M and then find t so
large that ~a ∈Mt.

Since Mt |= φ, we may find ~b ∈ Mt such that Mt |= ψ(~a,~b). So

M |= ψ(~a,~b). This completes the verification that M |= φ.
(2) (20 points) Recall thatM is an elementary substructure of N whenM is a

substructure of N , and M |= φ(~m) ⇐⇒ N |= φ(~m) for all formulae φ(~x)
and all tuples ~m of elements of M .

Let 〈Mn : n ∈ N〉 be a sequence of L-structures, such that Mn is an
elementary substructure of Mn+1. Letting M =

⋃
nMn, we define an L-

structure M with underlying set M in the natural way. Prove that Mn is
an elementary substructure of M for all n.

Hint: Prove by induction on φ that for all n and all ~m from Mn,Mn |=
φ(~m) ⇐⇒ M |= φ(~m).

Note that by an easy induction Mn is an elementary substructure of
Mn′ .

Taking the hint, we start with the observation that the base case (quan-
tifier free φ) is easy because Mn is a substructure of M. The connective
steps are also very easy.

Suppose now that φ(y1, . . . yn) has form ∃x ψ(x, y1, . . . yn) where the IH

holds for ψ. If Mn |= φ(~b), choose a ∈ Mn such that Mn |= ψ(a,~b), use

the IH to conclude that M |= ψ(a,~b) and hence M |= φ(~b).

If M |= φ(~b) for some ~b ∈ Mn, then choose a ∈ M such that M |=
ψ(a,~b). Choose n′ ≥ n such that a ∈Mn′ . By the IH (for n′)Mn′ |= ψ(a,~b)

and so Mn′ |= φ(~b). Since Mn is an elementary substructure of Mn′ ,

Mn |= φ(~b).
Finally we can handle the ∀ case by a similar argument, or combine the

facts that we did the ¬ and ∃ steps.
(3) (10 points) Let L be a countable FOL, letM be an infinite L-structure and

let Y be any set. Prove that there exists N such that M is an elementary
substructure of N and there is an injective function from Y to N .

Hint: Expand the language with constants ca for a ∈ M and dy for
y ∈ Y . Show that the theory S ∪ T is consistent where S is the complete
diagram of M and T is the set of formulae dy 6= dy′ for y 6= y′.

If N |= S ∪T then it contains an elementary substructure isomorphic to
M (which is sufficient, with a bit of relabeling) and the interpretation of
the constants dy gives the required injective function.
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Let s0 be a finite subset of S and t0 a finite subset of T . M (viewed as
a structure for its expanded language) is a model of s0, and by choosing
distinct elements (which is possible because M is infinite) to interpret those
finitely many dy appearing in t0 we get an expansion which is a model of
s0 ∪ t0.


