21-300 F15 HW 5

A note on notation: We often write " $\phi(y_1, \ldots y_n)$ " to indicate that ϕ is a formula whose free variables have been listed without repetitions as $y_1, \ldots y_n$. When \mathcal{M} is a structure for the language of ϕ , and $a_1, \ldots a_n \in \mathcal{M}$ then we often write " $\mathcal{M} \models \phi(a_1, \ldots a_n)$ " as shorthand for " $\mathcal{M} \models \phi[y_1/c_{a_1}, \ldots y_n/c_{a_n}]$ ".

IMPORTANT: PLEASE EMAIL COMPLETED HOMEWORKS TO:

lserafin.algebra@gmail.com

- (1) Let T be a first-order theory in some language \mathcal{L} , let ϕ be a formula with x as its only free variable. Use the Completeness and Soundness theorems to show that
 - (a) If $T \vdash \phi[x/c]$ where c is a constant symbol not appearing in T or ϕ , then $T \vdash \forall x \phi$.
 - (b) If $T \cup \{\phi[x/c]\} \vdash \psi$, where c is a constant symbol not appearing in $T \cup \{\phi, \psi\}$, then $T \cup \{\exists x \ \phi\} \vdash \psi$.
- (2) Let \mathcal{M} and \mathcal{N} be structures for some first-order language \mathcal{L} with underlying sets M and N respectively. A function $f : M \longrightarrow N$ is called a homomorphism from \mathcal{M} to \mathcal{N} if
 - (a) $f(c^{\tilde{\mathcal{M}}}) = c^{\tilde{\mathcal{N}}}$ for all constant symbols c.
 - (b) For every relation symbol R with arity k and every $a_1, \ldots a_k \in M$, $R^{\mathcal{M}}(a_1, \ldots a_k) \implies R^{\mathcal{N}}(f(a_1), \ldots f(a_k)).$
 - (c) For every function symbol G with arity l and every $a_1, \ldots a_l \in M$, $f(G^{\mathcal{M}}(a_1, \ldots a_l)) = G^{\mathcal{N}}(f(a_1), \ldots f(a_l)).$

Let f be a homomorphism from \mathcal{M} to \mathcal{N} . For each closed term t of the expanded language for \mathcal{M} , let \overline{t} be the closed term of the expanded language for \mathcal{N} obtained by replacing each constant c_a by the constant $c_{f(a)}$.

- (a) Prove that $f(t^{\mathcal{M}}) = \bar{t}^{\mathcal{N}}$ for each closed term t of the expanded language for \mathcal{M} .
- (b) Prove (by induction on ϕ) that if $\phi(y_1, \ldots, y_n)$ is a formula of \mathcal{L} involving only the connectives \wedge and \vee and only the quantifier \exists , then for all $a_1 \ldots a_n \in M$ $\mathcal{M} \models \phi(a_1, \ldots, a_n) \implies \mathcal{N} \models \phi(f(a_1), \ldots, f(a_n))$. Hint: you should find the first part of the question helpful in doing the base case (when ϕ is atomic).