
FIELD THEORY HOMEWORK SET IV SOLUTIONS

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by
yourself. Please contact me by email if you are puzzled by something, would like a
hint or believe that you have found a typo.

(1) An ordered field is a field F together with a set P ⊆ F of elements such
that (defining −P = {−a : a ∈ P})
(a) P is closed under + and ×
(b) P ∩ −P = {0}.
(c) P ∪ −P = F .

Intuitively, you can think of P as the set of field elements which have
been designated as non-negative.

Prove that
(a) There is a unique set P ⊆ R such that (R, P ) is an ordered field.

The non-negative reals form such a set, so one exists. Suppose that P
is such a set. Then for b ≥ 0, let a =

√
b. Either a ∈ P or −a ∈ P and

in either case b = a2 = (−a)2 ∈ P . So P contains the non-negative
reals, so easily it is equal to the non-negative reals.

(b) There is no set P ⊆ C such that (C, P ) is an ordered field.
If P is such a set then either i or −i is in P , so −1 is in P . Similarly
1 or −1 is in P so 1 is in P . Contradiction!

(c) There are at least two sets P ⊆ Q(
√

2) such that (Q(
√

2), P ) is an
ordered field.
There are two embeddings of the field into the real numbers, namely
a + b

√
2 7→ a ± b

√
2. Each one induces an ordering and they are

different.
(d) If (F, P ) is an ordered field then F has characteristic zero and −1 is

not a sum of squares in F .
As we saw 1 ∈ P . If the field has characteristic p then the sum of p−1
many 1’s is in P , so −1 is in P . This is impossible so the characteristic
is zero. Now −1 is not in P but any sum of squares is in P , hence −1
is not a sum of squares.

(2) Let F be a field extending the field E and let a ∈ F be algebraic over E.
Show that the following are equivalent:
(a) a is separable over E.
(b) There is a field F ′ extending E such that there exist [E(a) : E] distinct

monomorphisms σ : E(a) → F ′ with σ � E = id.
Suppose that a is separable and let F ′ be a splitting field for mE

a over
E. Then mE

a has deg(mE
a ) = [E(a) : E] distinct roots in F ′, and as usual

these are possible values for σ(a).
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Conversely suppose that F ′ as above exists. Each value of σ(a) is a root
of mE

a , so that polynomial has distinct roots in a field where it splits, hence
it is separable.

(3) Let f = x4 − 2.
(a) Show that f is irreducible in Q[x].

Eisenstein.
(b) Find the complex roots of f , and show that f splits over the complex

numbers.
Let α = 21/4, then the roots are αim for 0 ≤ m < 4.

(c) Let E be the subfield of C generated by the roots of f (so that E is a
splitting field for Q). Find [E : Q].
α has degree 4 over Q. i /∈ Q(α) since α is real, so i has degree 2 over
Q(α). Hence E = Q(i, α) has degree 8.

(d) Compute the group Aut(E/Q), and describe how each element of this
group permutes the roots of f .
Any member of the group moves i to ±i and α to ±α,±iα. This gives
8 possibilities, all of which can occur.
Label the roots clockwise in the complex plane so that α gets label 1,
iα gets label 2, −α gets label 3, −iα gets label 4.
Let σ be the AM which fixes α and exchanges ±i. Let τ be the AM
which fixes i and maps α to iα.
τ generates a group of order 4 where as permutations

τ0 = e, τ = (1234), τ2 = (13)(24), τ3 = (1432).

σ = (24) and τσ = (1432) = τ3, so we readily see that this is the
dihedral group of order 8. Of course the other four elements are

σ = (24), στ = (24)(1234) = (14)(23), στ2 = (13), στ3 = (24)(1432) = (12)(34)

(e) Find all the subgroups of Aut(E/Q) and their fixed fields.
Possible orders are 2, 4 and 8.
Order one: H1 = {e} with fixed field E.
Order eight: H2 = Aut(E/Q) with fixed field Q.
Order two: each element of order two gives a subgroup of order two,
whose fixed field will be an extension of degree four. We cheat a bit
and use the easy fact that Fix(Hρ) = ρ[Fix(H)].
H3 = {e, σ} = {e, (24)} has fixed field Q(α).
H4 = Hτ

3 = {e, στ2} = {e, (13)} has fixed field Q(iα).
Note that α2 =

√
2 and that τ2 fixes this and i. It follows that:

H5 = {e, τ2} = {e, (13)(24)} has fixed field Q(i,
√

2). We note that
H5 is normal and corresponds to a Galois extension of Q.
Note that στ = (14)(23) moves α to −iα and iα to −α, so i moves
to −i. A little thought (actually I found it by a tedious linear algebra
calculation using the obvious basis for E over Q) shows that if β =
(1 − i)α then β is fixed. More linear algebra (use the obvious basis
again) shows that β has degree 4 over Q, so the minimal polynomial
is x4 + 8.
H6 = {e, (14)(23)} has fixed field Q(β).
Now conjugating by τ = (1234) takes (14)(23) to (12)(34), and τ maps
β to γ = (1 + i)α.
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H7 = {e, (12)(34)} has fixed field Q(γ).
Finally we think about subsgroups of order 4. They must either be
cyclic or isomorphic to the Klen four group. Each one has fixed field
an extension of degree 2.
It’s readily seen that τ generates a cyclic group of order 4. Noting
that τ fixes i we have
H8 = {e, (1234), (13)(24), (1432)} has fixed field Q(i).
Now there is also a subgroup
H9 = {e, (13), (24), (1324)}. A little thought shows that the fixed field
is Q(

√
2).

Finally there is a subgroup H10 = {e, (12)(34), (13)(24), (14)(23)}. A
little thought shows that the fixed field is Q(i

√
2).

(4) Let F have characteristic p. Use the binomial theorem to show that the
map a 7→ ap is a monomorphism from F to F . Show that if F is finite this
map is an automorphism of F , and in that case describe its fixed field.


