FIELD THEORY HOMEWORK SET IV

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

- (1) An ordered field is a field F together with a set $P \subseteq F$ of elements such that (defining $-P = \{-a : a \in P\}$)
 - (a) P is closed under + and \times
 - (b) $P \cap -P = \{0\}.$
 - (c) $P \cup -P = F$.

Intuitively, you can think of ${\cal P}$ as the set of field elements which have been designated as non-negative.

Prove that

- (a) There is a unique set $P \subseteq \mathbb{R}$ such that (\mathbb{R}, P) is an ordered field.
- (b) There is no set $P \subseteq \mathbb{C}$ such that (\mathbb{C}, P) is an ordered field.
- (c) There are at least two sets $P \subseteq \mathbb{Q}(\sqrt{2})$ such that $(\mathbb{Q}(\sqrt{2}), P)$ is an ordered field.
- (d) If (F, P) is an ordered field then F has characteristic zero and -1 is not a sum of squares in F.
- (2) Let F be a field extending the field E and let $a \in F$ be algebraic over E. Show that the following are equivalent:
 - (a) a is separable over E.
 - (b) There is a field F' extending E such that there exist [E(a) : E] distinct monomorphisms $\sigma : E(a) \to F'$ with $\sigma \upharpoonright E = id$.
- (3) Let $f = x^4 2$.
 - (a) Show that f is irreducible in $\mathbb{Q}[x]$.
 - (b) Find the complex roots of f, and show that f splits over the complex numbers.
 - (c) Let E be the subfield of \mathbb{C} generated by the roots of f (so that E is a splitting field for \mathbb{Q}). Find $[E : \mathbb{Q}]$.
 - (d) Compute the group Aut(E/Q), and describe how each element of this group permutes the roots of f.
 - (e) Find all the subgroups of $Aut(E/\mathbb{Q})$ and their fixed fields.
- (4) Let F have characteristic p. Use the binomial theorem to show that the map $a \mapsto a^p$ is a monomorphism from F to F. Show that if F is finite this map is an automorphism of F, and in that case describe its fixed field.