FIELD THEORY HOMEWORK SET II

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

- (1) Let F be a field, and let Aut(F) be the set of automorphisms of F.
 - (a) Show that Aut(F) forms a group under composition.
 - (b) Show that if $X \subseteq Aut(F)$ and we define $Fix(X) = \{a \in F : \forall \sigma \in X \ \sigma(a) = a\}$ then Fix(X) is a subfield of F.
 - (c) Show that $Fix(X) = Fix(\langle X \rangle)$, where as usual $\langle X \rangle$ is the subgroup generated by X.
- (2) Let $E = \mathbb{Z}/2\mathbb{Z}$.
 - (a) Find an irreducible element in E[x] of degree 3.
 - (b) Construct a finite field with 8 elements.
 - (c) Find all the subfields of the field you just constructed, and also find its automorphism group.
- (3) What is the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over each of the fields
 - (a) \mathbb{Q} ?
 - (b) $\mathbb{Q}(\sqrt{2})$?
 - (c) $\mathbb{Q}(\sqrt{2},\sqrt{3})$?
- (4) Let \mathbb{Z} be a subring of S and let $a \in S$. a is *integral* over \mathbb{Z} iff there is $g \in \mathbb{Z}[x]$ such that g is monic and g(a) = 0.

Show that a is integral over \mathbb{Z} iff $(\mathbb{Z}[a], +)$ is a finitely generated abelian group, where as usual $\mathbb{Z}[a] = \{f(a) : f \in \mathbb{Z}[x]\}$ is the least subring of S containing $\mathbb{Z} \cup \{a\}$.

- (5) Prove that if $f \in \mathbb{R}[x]$ has odd degree then f has at least one root. Hint: use calculus.
- (6) Prove that $\mathbb{Z}[x]$ is not a PID. (Harder) What are the prime ideals?
- (7) Prove that \mathbb{C} is a vector space over \mathbb{R} . What is its dimension? Find a basis. For each $z \in \mathbb{C}$ prove that the map which takes a to za is linear; also find its trace and determinant.