FIELD THEORY HOMEWORK SET I

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

- (1) Let R be an ID and let P be a prime ideal of R. Let F be the field of fractions of R, and let S be the subset of F consisting of elements that can be written in the form a/b where $a \in R$, $b \in R \setminus P$.
 - (a) Prove that S is a subring of F, and that R is contained in S (as usual, each $r \in R$ is identified with the fraction r/1 in F).

This is tedious, the main point is that the set of denominators is closed under multiplication (as P is a prime ideal).

(b) Prove that the units of S are precisely the elements of form a/b where $a, b \in R \setminus P$.

If a/b is of this form then $b/a \in S$, and is the inverse. Conversely suppose that a/b is a unit in S, where $b \notin P$. Then $b/a \in S$, so b/a = b'/a' where $a' \notin P$. We have the equation $b'a = ba' \notin P$ since P is prime, so $b' \notin P$ and we are done.

Note: I had to be a bit careful because an element of the FOF can have many representations as a fraction. In particular an element of S can have representations where the denominator is in P.

Note: If R is not a PID there is in general no reasonable way to choose a "canonical" way of representing a member of the FOF.

(c) Prove that the set of nonunits in S forms an ideal.

The nonunits are elements of the form a/b for $a \in P, b \notin P$. These easily are seen to form an ideal.

(d) Prove that the set of nonunits is the only maximal ideal in S.

Any ideal which contains a unit is the whole ring, so any ideal $I \neq S$ is contained in the set of nonunits. Hence the set of nonunits is maximal, and is the only maximal ideal.

(e) Suppose now that $R = \mathbb{Z}$, $F = \mathbb{Q}$ and P = (p) for some prime number p.

Prove that

- (i) p and its associates are the only irreducibles in S.
- (ii) The only ideals in S are those of form (p^n) for $n \ge 0$.

By prime factorisation every element is an associate of p^n for some $n \ge 0$. So it is enough to work out which of these elements are irreducible. Again by prime factorisation we see that p is the only irreducible. Now let I be an ideal and let n be least such that $p^n \in I$. Then I contains all multiples of p^n but no associates of p^m for m < n, so that easily $I = (p^n)$.

Cultural comment: This is a foretaste of the theory of local rings and DVR's, which are important in more advanced work in algebra.

(2) Let R = Z[i], the least subring of the complex numbers containg Z and i.
(a) Show that R consists of all complex numbers of the form a + bi with a, b ∈ Z.

Routine once we note that $i^2 = -1 \in \mathbb{Z}$.

(b) Show that if $a+bi \neq 0$ then the principal ideal (a+bi), when considered as a subset of the complex plane, forms a square lattice. Deduce that R is a Euclidean domain (hint: use the absolute value as your Euclidean function).

Recall that in the complex plane the number a + bi is identified with the point (a, b). Also i(a + bi) = -b + ai, which is identified with the point (-b, a) obtained by rotating (a, b) through a right angle about 0. Now it is easy to see that (a, b) and (-b, a) generate a square lattice. To finish let a + bi be nonzero and let c + di be arbitrary. Then in the complex plane the point c + di must be within $\sqrt{2}/2|a + bi|$ of some point of the square lattice of points (a + bi); so we can find $q \in R$ such that |(c + di) - q(a + bi)| < |a + bi|.

(c) Let $N(a+bi) = a^2 + b^2$. Show that N(rs) = N(r)N(s) for all $r, s \in R$. Show that the units of R are precisely those $r \in R$ with N(r) = 1, and identify them.

The multiplicative property of N is routine. Note that $N(z) = z\bar{z}$ where \bar{z} is the complex conjugate of z.

If r is a unit then rs = 1 so N(r)N(s) = 1 and so N(r) is a unit in \mathbb{Z} . But N is a positive function so N(r) = 1. Conversely if $N(r) = r\bar{r} = 1$ then $\bar{r} \in R$, so \bar{r} is an inverse and r is a unit. The units are 1, -1, i, -i.

(d) Show that N(r) is never congruent to 3 modulo 4. use this to show that if the prime number p is congruent to 3 modulo 4, then p is prime in R.

For any integer a, a^2 is congruent to zero or one mod four. Now let $p \equiv 1 \mod 4$, and suppose that p is not prime in R. Since R is Euclidean it's a PID, so primeness is irreducibility. Let p = ab where a, b are not units in R, then $p^2 = N(p) = N(a)N(b)$ so N(a) = N(b) = p. But this is impossible,

(e) Show that 5 is not prime in R, and find its prime factorisation.

5 = (2+i)(2-i). N(2+i) = 5 which is prime, so arguing as in the also question 2+i is prime. Similarly 2-i is prime.

(3) Let $\alpha = i\sqrt{5}$, and let $R = \mathbb{Z}[\alpha]$, the least subring of the complex numbers containingg \mathbb{Z} and α .

(a) Show that R consists of all complex numbers of the form $a + b\alpha$ with $a, b \in \mathbb{Z}$.

Follows easily from $\alpha^2 = -5 \in \mathbb{Z}$.

(b) Let $N(a + b\alpha) = a^2 + 5b^2$. Show that N(rs) = N(r)N(s). Show that the units of R are precisely those $r \in R$ with N(r) = 1, and identify them.

Again $N(z) = z\overline{z}$. Much as in the last question we get that the units are 1, -1.

(c) Show that $2, 3, 1 + \alpha, 1 - \alpha$ are all irreducible in R.

Consider the function N mod 5 and observe that $N(a + b\alpha) \equiv a^2 \equiv 0, 1, 4 \mod 5$. Now $N(2) = 4 = 2 \times 2, N(3) = 9 = 3 \times 3, N(1 \pm \alpha) = 2 \times 3$, so argue as in the last question that they are all irreducible.

(d) Show that R is not a UFD. Hint: what is $(1 + \alpha)(1 - \alpha)$?

 $(1 + \alpha)(1 - \alpha) = 2 \times 3$ so that 6 has distinct factorisations into irreducibles.

(e) Show that $2, 3, 1 + \alpha, 1 - \alpha$ are not prime in R.

2 divides 6 but it divides neither of $1 \pm \alpha$. Similarly for the others.

(4) Prove that the identity map is the only automorphism of the field \mathbb{R} .

Let π be an AM. π fixes 1, so by an easy induction it fixes all elements of \mathbb{N} . It preserves inverses so it fixes all elements of \mathbb{Z} . It preserves quotients so it fixes all elements of \mathbb{Q} .

Now let r > 0, then $r = s^2$ so $\pi(r) = \pi(s^2) = \pi(s)^2 > 0$. So π preserves positivity. Then if a < b we have b - a > 0, $\pi(b - a) = \pi(b) - \pi(a) > 0$, so π preserves the ordering.

Now let $r \in \mathbb{R}$. For every rational q, if q < r then $q = \pi(q) < \pi(r)$, similarly if r < q then $\pi(r) < q$. So $\pi(r) = r$.

(5) Let $\mathbb{Q}(i)$ be the least subfield of \mathbb{C} containing \mathbb{Q} and i, and $\mathbb{Q}[i]$ be the least subring of \mathbb{C} containing \mathbb{Q} and i. Prove that $\mathbb{Q}(i) = \mathbb{Q}[i]$.

As usual $\mathbb{Q}[i]$ is the set of a + bi with $a, b \in \mathbb{Q}$. We need to see this is a field. So let a + bi be a nonzero element and note that

$$\frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2+b^2} \in \mathbb{Q}[i].$$

(6) Recall that S_4 is the group of all permutations of the set $\{1, \ldots, 4\}$. Find all the subgroups of S_4 , and indicate which ones are normal.

By Lagrange the possible order for subgroups are 1, 2, 3, 4, 6, 8, 12, 24. Order 1: $\{e\}$.

Order 2: such subgroups are generated by elements of order 2. There are several of these, namely the 6 transpositions and the 3 elements (12)(34), (13)(24), (14)(23).

Order 3: such subgroups are generated by elements of order 3. These are the 3-cycles, of which there are 8, giving 4 subgroups.

Order 4: such subgroups are either cyclic of order 4 or are Klein 4-groups (that is of form C_2^2).

JAMES CUMMINGS

The elements of order 4 are the 4-cycles, of which there are 6. This gives 3 cyclic groups of order 4.

The 4-groups consist of elements of order 2. These come in two kinds: there is $\{e, (12), (34), (12)(34)\}$ and two similar groups, but also the group $\{e, (12)(34), (13)(24), (14)(23)\}$.

Order 6: There are four copies of S_3 , given by the permutation groups on the three-element subsets of $\{1, 2, 3, 4\}$. One can check that this is all.

Order 8: recall that the dihedral group of order 8 is the group od symmetries of the square. There are 3 subgroups of order 8, all of this kind. A typical one is generated by (1234) and (12)(34).

Order 12: there is the single subgroup A_4 .

Of these the only non-trivial normal ones are A_4 and the subgroup $\{e, (12)(34), (13)(24), (14)(23)\}$.