FIELD THEORY HOMEWORK SET I

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

- (1) Let R be an ID and let P be a prime ideal of R. Let F be the field of fractions of R, and let S be the subset of F consisting of elements that can be written in the form a/b where $a \in R$, $b \in R \setminus P$.
 - (a) Prove that S is a subring of F, and that R is contained in S (as usual, each $r \in R$ is identified with the fraction r/1 in F).
 - (b) Prove that the units of S are precisely the elements of form a/b where $a, b \in R \setminus P$.
 - (c) Prove that the set of nonunits in S forms an ideal.
 - (d) Prove that the set of nonunits is the only maximal ideal in S.
 - (e) Suppose now that $R = \mathbb{Z}$, $F = \mathbb{Q}$ and P = (p) for some prime number p.

Prove that

- (i) p and its associates are the only irreducibles in S.
- (ii) The only ideals in S are those of form (p^n) for $n \ge 0$.
- (2) Let $R = \mathbb{Z}[i]$, the least subring of the complex numbers containg \mathbb{Z} and i.
 - (a) Show that R consists of all complex numbers of the form a + bi with $a, b \in \mathbb{Z}$.
 - (b) Show that if a+bi ≠ 0 then the principal ideal (a+bi), when considered as a subset of the complex plane, forms a square lattice. Deduce that R is a Euclidean domain (hint: use the absolute value as your Euclidean function).
 - (c) Let $N(a+bi) = a^2 + b^2$. Show that N(rs) = N(r)N(s) for all $r, s \in R$. Show that the units of R are precisely those $r \in R$ with N(r) = 1, and identify them.
 - (d) Show that N(r) is never congruent to 3 modulo 4. use this to show that if the prime number p is congruent to 3 modulo 4, then p is prime in R.
 - (e) Show that 5 is not prime in R, and find its prime factorisation.
- (3) Let $\alpha = i\sqrt{5}$, and let $R = \mathbb{Z}[\alpha]$, the least subring of the complex numbers containg \mathbb{Z} and α .
 - (a) Show that R consists of all complex numbers of the form $a + b\alpha$ with $a, b \in \mathbb{Z}$.
 - (b) Let $N(a + b\alpha) = a^2 + 5b^2$. Show that N(rs) = N(r)N(s). Show that the units of R are precisely those $r \in R$ with N(r) = 1, and identify them.
 - (c) Show that $2, 3, 1 + \alpha, 1 \alpha$ are all irreducible in R.
 - (d) Show that R is not a UFD. Hint: what is $(1 + \alpha)(1 \alpha)$?

JAMES CUMMINGS

(e) Show that $2, 3, 1 + \alpha, 1 - \alpha$ are not prime in R.

- (4) Prove that the identity map is the only automorphism of the field $\mathbb R.$
- (5) Let $\mathbb{Q}(i)$ be the least subfield of \mathbb{C} containing \mathbb{Q} and i, and $\mathbb{Q}[i]$ be the least subring of \mathbb{C} containing \mathbb{Q} and i. Prove that $\mathbb{Q}(i) = \mathbb{Q}[i]$.
- (6) Recall that S_4 is the group of all permutations of the set $\{1, \ldots, 4\}$. Find all the subgroups of S_4 , and indicate which ones are normal.