FINAL FOR FIELD THEORY

JAMES CUMMINGS

You may consult any books or papers you wish. Please make a note of any works consulted. You may not collaborate but may consult with me if you have any questions. This final is due by email before 11:59pm on May 10.

- (1) (20 points total) Let F be a subfield of \mathbb{C} with $[F : \mathbb{Q}]$ finite. Prove that F contains only finitely many roots of unity (recall that a root of unity is a complex number ζ such that $\zeta^n = 1$ for some n > 0).
- (2) (60 points total) Let K be the subfield of \mathbb{C} generated by the complex roots of $x^5 + 2$.
 - (a) (5 points) Find $[K : \mathbb{Q}]$.
 - (b) (10 points) Describe the group $G = Aut(K/\mathbb{Q})$.
 - (c) (10 points) Give an explicit isomorphism between G and a subgroup H of S_5 .
 - (d) (25 points) Find all the subgroups of G and all the fields intermediate between \mathbb{Q} and K. Which ones are Galois extensions of \mathbb{Q} ? Identify $K \cap \mathbb{R}$.
 - (e) (10 points) Find all the roots of unity in K.
- (3) (25 points total)
 - (a) (15 points) Let F be a finite degree extension of E, and assume F is a Galois extension of E. Say that F_1 is an "abelian extension of E" if F_1 is a subfield of F containing E, F_1 is a Galois extension of E and $Aut(F_1/E)$ is abelian. Show that there is a unique abelian extension F_{max} of Ewhich contains all the abelian extensions. Hint: use the fundamental theorem to see which group this field must correspond to!
 - (b) (10 points) Let $E = \mathbb{Q}$ and K the field considered in the preceding question. Find K_{max} .
- (4) (25 points total) Prove that for any finite group G there is a pair of fields E and F such that F is a Galois extension of E and Aut(F/E) is isomorphic to G. Hint: any finite group is isomorphic to a subgroup of S_n .

JAMES CUMMINGS

- (5) (10 points total) Find the minimal polynomial of $1 + \sqrt{2} + \sqrt[3]{3}$ over \mathbb{Q} .
- (6) (40 points total) Let α be a real irrational number which is algebraic over \mathbb{Q} , let f be the minimal polynomial of α over \mathbb{Q} and let n be the degree of f.
 - (a) (10 points) Prove that $f'(\alpha) \neq 0$, and that $f(r) \neq 0$ for all rational r.
 - (b) (10 points) Prove that there is a constant D > 0 such that for every $p, q \in \mathbb{Z}$ with q > 0, $|f(p/q)| \ge D/q^n$. Hint: you may find it easier to think about multiplying f by some integer to get a polynomial in $\mathbb{Z}[x]$.
 - (c) (10 points) Prove there is a constant C > 0 such that for every $p, q \in \mathbb{Z}$ with q > 0, $|\alpha - p/q| \ge C/q^n$. Hint: the mean value theorem.
 - (d) (10 points) Prove that $\sum_{n=0}^{\infty} 10^{-n!}$ is transcendental over \mathbb{Q} .
- (7) (50 points total) Let $F_0 = \mathbb{Q}$. For each n > 0 let $\alpha_n = \sqrt[2^n]{2}$, and let $F_n = \mathbb{Q}(\alpha_n)$.
 - (a) (10 points) Prove that $F_n \subseteq F_{n+1}$ and find $[F_{n+1}:F_n]$.
 - (b) (20 points) Let $F_{\infty} = \bigcup_{n} F_{n}$. Find a basis for F_{∞} as a vector space over F_{0} , and use it to show that F_{∞} has countably infinite dimension as an F_{0} -vector space.
 - (c) (20 points) Is $Aut(F_{\infty}/F_0)$ finite, countably infinite or uncountably infinite?

 $\mathbf{2}$