+ + +

Conditional Probability

Suppose $A\subseteq \Omega.$ We define an induced probability \mathbf{P}_A by

$$P_A(\omega) = \frac{P(\omega)}{P(A)}$$
 for $\omega \in A$.

Two Coins

 $A = \{At \text{ least one coin is a Head}\}. P(A) = 3/4.$

 $B = \{ \text{Both are heads} \}. \ P(B) = 1/4.$ So $P_A(B) = 1/3.$

Usually write $P(B \mid A)$ for $P_A(B)$.

If B is an arbitrary subset of Ω we write

$$\mathbf{P}(B \mid A) = \mathbf{P}_A(A \cap B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}.$$

Two Dice

 $A = \{x_1 + x_2 \text{ is odd}\}. \ \mathbf{P}(A) = 1/2$ $B = \{x_1 > x_2\}. \ \mathbf{P}(B) = 5/12.$ $\mathbf{P}(A \cap B) = 1/4.$

$$P(B | A) = 1/2 > P(B)$$
.

+ 1 +

+ + +

Binomial n coin tosses. p = P(Heads) for each toss. $\Omega = \{H, T\}^n$.

$$\mathbf{P}(\omega) = p^k (1 - p)^{n - k}$$

where k is the number of H's in ω . E.g. $\mathbf{P}(HHTTHTHHTHTHTHT) = p^8(1-p)^6$.

Fix k. $A=\{\omega: H \text{ appears } k \text{ times}\}$ $\mathbf{P}(A)=\binom{n}{k}p^k(1-p)^{n-k}.$ If $\omega\in A$ then

$$\mathbf{P}_{A}(\omega) = \frac{p^{k}(1-p)^{n-k}}{\binom{n}{k}p^{k}(1-p)^{n-k}} = \frac{1}{\binom{n}{k}}$$

i.e. conditional on there being k heads, each sequence with k heads is equally likely.

Law of Total Probability

Let B_1, B_2, \ldots, B_n be pairwise disjoint events which partition Ω . For any other event A,

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i).$$

Proof

$$\sum_{i=1}^{n} \mathbf{P}(A \mid B_i) \mathbf{P}(B_i) = \sum_{i=1}^{n} \mathbf{P}(B_i \cap A)$$

$$= \mathbf{P}(\bigcup_{i=1}^{n} (B_i \cap A)) (1)$$

$$= \mathbf{P}(A).$$

There is equality in (1) because the events $B_i \cap A$ are pairwise disjoint.

+ 3 +

Suppose we choose 2 numbers X_1, X_2 randomly from [n]. What is the probability of

+

 $A = \{|X_1 - X_2| \le 1\}?$

+

Let
$$B_i = \{X_1 = i\}$$
 for $i \in [n]$. Then

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} P(A \mid B_i)$$

$$= \frac{1}{n} (P(A \mid B_1) + P(A \mid B_n) + \sum_{i=2}^{n-1} P(A \mid B_i))$$

$$= \frac{1}{n} \left(\frac{2}{n} + \frac{2}{n} + \sum_{i=2}^{n-1} \frac{3}{n} \right)$$

$$= \frac{3n-2}{n^2}.$$

+

+ +

Independence

Two events A,B are said to be independent if

$$P(A \cap B) = P(A)P(B)$$
,

or equivalently

$$P(A \mid B) = P(A)$$
.

(i) Two Dice

 $A = \{\omega : x_1 \text{ is odd}\}, B = \{\omega : x_1 = x_2\}.$ $|A|=18, |B|=6, |A\cap B|=3.$ $P(A) = 1/2, P(B) = 1/6, P(A\cap B) = 1/12.$ A,B are independent.

(ii)
$$A = \{x_1 \ge 3\}$$
, $B = \{x_1 \ge x_2\}$.
 $|A| = 24$, $|B| = 21$, $|A \cap B| = 18$.
 $P(A) = 2/3$, $P(B) = 7/12$, $P(A \cap B) = 1/2$.
 A, B are not independent.

2 sets $S,T\subseteq [n]$ are chosen (i) independently and (ii) uniformly at random from all possible sets. $(\Omega = \{0,1\}^{2n})$. Let

$$A=\{|S|=|T| \text{ and } S\cap T=\emptyset\}.$$

For each $X\subseteq [n]$ we let $B_X=\{S=X\}=\{(X,T): T\subseteq [n]\}$. Thus for each X, $\mathbf{P}(B_X)=2^{-n}$. So,

$$\mathbf{P}(A) = \sum_{X} \mathbf{P}(A \mid B_{X}) \mathbf{P}(B_{X})$$

$$= 2^{-n} \sum_{X} {n - |X| \choose |X|} 2^{-n} \qquad (2)$$

$$= 4^{-n} \sum_{k=0}^{n} {n \choose k} {n - k \choose k}.$$

(2) follows from the fact that there are $\binom{n-|X|}{|X|}$ subsets of the same size as X which are disjoint from X.

+

+

Random Bits

Suppose $\Omega = \{0,1\}^n = \{(x_1,x_2,\ldots,x_n): x_j = 0/1\}$ with uniform distribution.

Suppose event A is determined by the values of $x_i,\,i\in\Delta_A$

e.g. if $A = \{x_1 = x_2 = \dots = x_{10} = 0\}$ then $\Delta_A = \{1, 2, \dots, 10\}.$

More Precisely: for $S \subseteq [n]$ and $x \in \Omega$ let $x_S \in \{0,1\}^S$ be defined by $(x_S)_i = x_i, i \in S$. Ex. $n = 10, S = \{2,5,8\}$ and $x = (0,0,1,0,0,1,1,1,1,0\}$. $x_S = \{0,0,1\}$.

A is determined by Δ_A if $\exists S_A \subseteq \{0,1\}^{\Delta_A}$ such that $x \in A$ iff $x_{\Delta_A} \in S_A$. Furthermore, no subset of Δ_A has this property.

In our example above, $S_A \,=\, \{({\bf 0},{\bf 0},{\bf 0},{\bf 0},{\bf 0},{\bf 0},{\bf 0},{\bf 0},{\bf 0},{\bf 0})\}\,-\,(|S_A|\,=\,1\,$ here.)

7

8

+ -

Claim: if events A,B are such that $\Delta_A \cap \Delta_B = \emptyset$ then A and B are independent.

$$\begin{split} \mathbf{P}(A) &= \frac{|S_A|}{2^{|\Delta_A|}} \text{ and } \mathbf{P}(B) = \frac{|S_B|}{2^{|\Delta_B|}}. \\ \mathbf{P}(A \cap B) &= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \mathbf{1}_{\{x_{\Delta_A} \in S_A, x_{\Delta_B} \in S_B\}} \\ &= \frac{1}{2^n} |S_A| \; |S_B| 2^{n-|I_A|-|I_B|} \\ &= \mathbf{P}(A) \mathbf{P}(B). \end{split}$$

+