Balls in Boxes

m distinguishable balls in n distinguishable boxes.

Q = [n]™ = {(b1,b2,...,bm)} where b; denotes
the box containing ball 3.

Uniform distribution.

E = {Box 1 is empty}.
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Random Walk

A particle starts at 0 on the real line and each
second makes a random move left of size 1,
(probability 1/2) or right of size 1 (probability
1/2).

Consider n moves. Q = {L, R}"™.

For example if n = 4 then LLRL stands for
move left, move left, move right, move left.
Each sequence w is given an equal probability
27",

Let X, = Xp(w) denote the position of the
particle after n moves.

Suppose n = 2m. What is the probability

n =207
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Stirling’s Formula: n! =~ v/27n(n/e)™.



Boole’s Inequality

A,BCQ.
P(AUB) = P(A)+P(B)-P(ANB)(2)
< P(A)+P(B) 3)

If A, B are disjoint events i.e. AN B ={ then
P(AU B) = P(A) + P(B).

Example: Two Dice. A= {z1 > 3} and B =
{z2 > 3}.

Then P(A) = P(B) = 2/3 and P(AUB) =
8/9.

Colouring Problem

Theorem Let Aq,A>,...,An be subsets of A
and |A4;| =k for 1 <i < n. If n < 2k=1 then
there exists a partition A = RU B such that

A;NR#0and A,NB#0 1<i<n.

[R = Red elements and B= Blue elements.]

Proof Randomly colour A.
Q = {R,B}* = {f : A — {R,B}}, uniform
distribution.

BAD ={3i: A;C Ror A; C B}.
Claim: P(BAD) < 1.

Thus 2\ BAD # 0 and this proves the theo-
rem.

More generally,

P (G AZ-> < fj P(A;). (4)
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Inductive proof

Base case: n=1

Inductive step: assume (4) is true.
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Explanation:
For any set X C A and any z € {R, B} we have

P(f(X) =z) =27l
1. The number of w such that f(X) = z is 241X,

2. f(X) = z just depends on the random colours as-
signed to X and so is independent of colours not
in X.



Random Binary Search Trees

A binary tree consists of a set of nodes, one of which
is the root.

Each node is connected to 0,1 or 2 nodes below it and
every node other than the root is connected to exactly
one node above it. The root is the highest node.

The depth of a node is the number of edges in its path
to the root.

The depth of a tree is the maximum over the depths
of its nodes.

Let D, be the depth of this tree.

Claim: for any t > 0,
P(Dy > t) < (n2”(-D/2)t,

Proof The process requires at most n2 coin
flips and so we let Q = {L,R}”2 — most coin
flips will not be needed most of the time.

DEEP = {Dy, > t}.
For P c {L,R}t and S C [n], |S| =t let

DEEP(P,S) = {the particles S = {s1,s2,...,5t}

follow P in the tree i.e. the first ¢ moves of
s; are along P, 1 <3 < t}.

DEEP = | J|JDEEP(P,S).
P S

Starting with a tree Ty consisting of a single
root r, we grow a tree Tp, as follows:

The n'th particle starts at » and flips a fair
coin. It goes left (L) with probability 1/2 and
right (R) with probability 1/2.

It tries to move along the tree in the chosen
direction. If there is a node below it in this
direction then it goes there and continues its
random moves. Otherwise it creates a new
node where it wanted to move and stops.

S={4,8,11,17,25}

t=5 and DEEP(P,S) occursiif
4 goeslL...

8 goesLR...

11 goesLRR...

17 goesLRRL...

25 goesLRRLR...
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So if we put t = Alogon then
P(Dy, > Alogan) < (2nl=4/2)Alogzn

which is very small, for A > 2.
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