+ + +

Pigeon-hole principle

A function $f: A \to X$ is 1-1 (or an *injection*) if whenever $x \neq y$ then $f(x) \neq f(y)$.

Theorem 1 If $A = \{a_1, a_2, ..., a_r\}$ then the number of injections from A to X is p(n, r). For r > n it is 0.

Proof To each function $f:A\to X$ we associate the sequence b_1,b_2,\ldots,b_r where $b_i=f(a_i),\ i=1,2,\ldots,r$. f is an injection iff the sequence $b_1b_2\cdots b_r$ has no repetitions. \square

The (trivial) case r > n is called the *pigeon-hole principle*.

Informally: If more than n pigeons are to be placed in n pigeon-holes, at least one hole will end up with more than one pigeon. (For r>n the number of injections from A to X is 0.)

Example 1: There are at least 10⁴ people in China who have exactly the same number of strands of hair.

+ + + +

+ + +

Proof. A human may have $0 \le x \le 10^5 - 1$ hair strands. There are more then 10^9 people living in China. Label a 'hole' by the number of hair strands and put a person in hole i if she/he has exactly i hair strands. There must be at least one hole with 10^4 people or more people. Indeed, assume to the contrary, that this is not true. Then the total the number of people in China is at most $10^4 \times 10^5 = 10^9$, a contradiction.

Observe, that we used a more general version of the *pigeon-hole principle*, which informally says the following. If more than nk pigeons are to be placed in n pigeon-holes, one hole will end up with more than k pigeons.

+ 3 + 4

+ + + +

Example 2. Positive integers n and k are coprime if their largest common divisor is 1. If we take an arbitrary subset A of n+1 integers from the set $[2n] = \{1, \ldots n\}$ it will contain a pair of co-prime integers.

If we take the n even integers between 1 and 2n. This set of n elements does not contain a pair of mutually prime integers. Thus we cannot replace the n+1 by n in the statement. We say that the statement is tight.

Define the holes as sets $\{1,2\}, \{3,4\}, \ldots \{2n-1,2n\}$. Thus n holes are defined. If we place the n+1 integers of A into their corresponding holes – by the pigeon-hole principle – there will be a hole, which will contains two numbers. This means, that A has to contain two consecutive integers, say, x and x+1. But two such numbers are always co-prime. If some integer $y \neq 1$ divides x, i.e., x = ky, then x+1=ky+1 and this is not divisible by y.

+ 5 +

+ + +

Theorem 2 (Erdős-Szekeres) An arbitrary sequence of integers $(a_1, a_2, ..., a_{k^2+1})$ contains a monotone subsequence of length k+1.

Proof. Let $(a_i, a_i^1, a_i^2, \ldots, a_i^{\ell-1})$ be the longest monotone increasing subsequence of (a_1, \ldots, a_{k^2+1}) that starts with a_i $(1 \le i \le k^2+1)$, and let $\ell(a_i)$ be its length.

If for some $1 \leq i \leq k^2+1$, $\ell(a_i) \geq k+1$, then $(a_i, a_i^1, a_i^2, \ldots, a_i^{l-1})$ is a monotone increasing subsequence of length $\geq k+1$.

So assume that $\ell(a_i) \leq k$ holds for every $1 \leq i < k^2 + 1$.

Label a 'hole' by the length of a sequence and place the *monotone increasing* subsequence $(a_i,a_i^1,a_i^2,\ldots,a_i^{\ell-1})$ into the hole ℓ , which is its length. There are k^2+1 subsequences and k non-empty holes (different lengths), so by the pigeon-hole principle there will be (at least) k+1 sequences of the same length ℓ^* . Let $a_{i_1},a_{i_2},\ldots,a_{i_{k+1}}$ be the first entries of these sequences. Then $a_{i_1}\geq a_{i_2}\geq \ldots \geq a_{i_{k+1}}$ holds. Indeed, assume to the contrary that $a_{i_m}\leq a_{i_n}$ for some $1\leq m< n\leq k+1$. Then $a_{i_m}\leq a_{i_n}\leq a_$

+ 7 + 8