Grid path problems

A monotone path is made up of segments $(x,y) \rightarrow (x+1,y)$ or $(x,y) \rightarrow (x,y+1)$.

PATHS($(a,b) \rightarrow (c,d)$)={monotone paths from (a,b) to (c,d)}.

We drop the $(a,b) \rightarrow$ for paths starting at (0,0).

We consider 3 questions: Assume $a, b \ge 0$.

- 1. How large is PATHS(a,b)?
- 2. Assume a < b. Let PATHS $_>(a,b)$ be the set of paths in PATHS $_(a,b)$ which do not touch the line x=y except at $_(0,0)$. How big is PATHS $_>(a,b)$?
- 3. Assume $a \leq b$. Let $\mathsf{PATHS}_{\geq}(a,b)$ be the set of paths in $\mathsf{PATHS}(a,b)$ which do not pass through points with x > y. How big is $\mathsf{PATHS}_{\geq}(a,b)$?

+ 1

+ +

Natural bijection between PATHS(a, b) and STRINGS(a, b):

Path moves to Right, add R to sequence. Path goes up, add U to sequence.

So

$$|\mathsf{PATHS}(a,b)| = |\mathsf{STRINGS}(a,b)| = {a+b \choose a}$$

since to define a string we have state which of the a+b places contains an R.

2. Every path in PATHS $_{>}(a,b)$ goes through (0,1). So

+

$$|\mathsf{PATHS}_{>}(a,b)| = |\mathsf{PATHS}((0,1) \rightarrow (a,b))| - |\mathsf{PATHS}_{>}((0,1) \rightarrow (a,b))|.$$

Now

$$|\mathsf{PATHS}((0,1) o (a,b))| = inom{a+b-1}{a}$$

and

$$\begin{aligned} \mathsf{PATHS}_{\not>}((0,1) \to (a,b))| &= \\ |\mathsf{PATHS}((1,0) \to (a,b))| &= {a+b-1 \choose a-1}. \end{aligned}$$

We explain the first equality momentarily. Thus

$$\begin{aligned} |\mathsf{PATHS}_{>}(a,b)| &= {a+b-1 \choose a} - {a+b-1 \choose a-1} \\ &= \frac{b-a}{a+b} {a+b \choose a}. \end{aligned}$$

4

+ + +

Suppose $P\in \mathsf{PATHS}_{\not>}((0,1)\to(a,b)).$ We define $P'\in \mathsf{PATHS}((1,0)\to(a,b))$ in such a way that

$$P \to P'$$
 is a bijection.

Let (c,c) be the first point of P, which lies on the line $L=\{x=y\}$ and let S denote the initial segment of P going from (0,1) to (c,c).

 P^\prime is obtained from P by deleting S and replacing it by its reflection S^\prime in L.

To show that this defines a bijection, observe that if $P' \in \mathsf{PATHS}((1,0) \to (a,b))$ then a similarly defined *reverse reflection* yields a $P \in \mathsf{PATHS}_{\not >}((0,1) \to (a,b))$.

+

3. Suppose $P \in \mathsf{PATHS}_{\geq}(a,b)$. We define $P'' \in \mathsf{PATHS}_{>}(a,b+1)$ in such a way that

$$P \rightarrow P$$
" is a bijection.

Thus

$$|\mathsf{PATHS}_{\geq}(a,b)| = \frac{b-a+1}{a+b+1} {a+b+1 \choose a}.$$

In particular

$$\begin{aligned} |\mathsf{PATHS}_{\geq}(a,a)| &= \frac{1}{2a+1} {2a+1 \choose a} \\ &= \frac{1}{a+1} {2a \choose a}. \end{aligned}$$

The final expression is called a *Catalan Number*.

The bijection

Given P we obtain P" by raising it vertically one position and then adding the segment $(0,0) \rightarrow (0,1)$.

More precisely, if

$$P = (0,0), (x_1,y_1), (x_2,y_2), \dots, (a,b)$$

then

$$P'' = (0,0), (0,1), (x_1, y_1 + 1), \dots, (a, b + 1).$$

This is clearly a 1-1 onto function between $PATHS_{\geq}(a,b)$ and $PATHS_{>}(a,b+1)$.

+

7

+

8

+ +

+ 9