Matchings

A matching M of a graph G = (V,E) is a set
of edges, no two of which are incident to a
common vertex.

M-saturated

M=—}
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Perfect Matching
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M is a maximum matching of G if no match-
ing M’ has more edges.

Theorem 1 M s a maximum matching iff M
admits no M-augmenting paths.

Proof Suppose M has an augmenting path
P = (ao,bl,al, - ,ak,bk+1) where e, = (ai_l,bi) ¢
M,1<i<k+1and fj= (bja;) € M,1<i<

k.

M'= M — {f1, f2,---, fu} + {e1,e2,-- -, ext1}-
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M-alternating path

M not M M not M M

(ab,c,def)isan
M-alternating path

An M-alternating path joining 2 M-unsaturated
vertices is called an M-augmenting path.

o |M'|=|M|+1.

e M’ is a matching

For z € V let dj (x) denote the degree of z in
matching M, So djs(z) is O or 1.

dpr(z) x & {ag,b1,. ., b1}
dM/(.Z‘) =< dy(=z) z € {b1,...,ar}
dy(z) +1 = € {ag,bp41}

So if M has an augmenting path it is not max-
imum.
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Bipartite Graphs
Suppose M is not a maximum matching and |M’| > |M]|.
Consider H = G[MVM'] where MVM' = (M\M")U(M'\
M) is the set of edges in exactly one of M, M’ Let G = (AU B, E) be a bipartite graph with
Maximum degree of H is 2 — < 1 edge from M or M'. bipartition A7B'
SO H is a collection of vertex disjoint alternating paths

and cycles. For SCAlet N(S)={be B: 3ac S,(a,b) €
’ N \ M E}
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\ \ \ 'y a, by
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© (d) N({a, a;})={b,b;b,}
|M'| > |[M| impplies that there is at least one path of
type (d).
Such a path is M-augmenting O glearly, |[M| < |A|,|B| for any matching M of
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Hall’s Theorem
Only if: Suppose M = {(a,¢(a)) : a € A}
Theorem 2 G contains a matching of size |A| saturates A.
iff
1 9(2) £ N(§
IN(S)| > 15| VSCA. (1)
S @(4) +non-matching
a; by edges
oD e NS
a b 4 ?(3) € N(§
% s IN(S)| > {o(s): s € S}
= |5
% ba and so (1) holds.

If: Let M = {(a,¢(a)) : a € A’} (A" C A)

is @ maximum matching. Suppose ag € A is
N({{a1,a2,a3}) = {b1,b2} and so at most 2 of M-unsaturated. We show that (1) fails.
a1,ap,a3 can be saturated by a matching.
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Let

A1 = {a € A : such that a is reachable from
ag by an M-alternating path.}

By, = {b € B : such that b is reachable from ag
by an M-alternating path.}

o
NoA1-B\B 1
edges
Ay Ay Ay Ay
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Marriage Theorem

Theorem 3 Suppose G = (AU B,E) is k-
regular. (k> 1)i.e. dg(v) =k forallv € AUB.
Then G has a perfect matching.

Proof
k|A| = |E| = k| B|
and so |A| = |B|.
Suppose S C A. Let m be the number of
edges incident with S. Then
k|S| = m < k|N(S)|.

So (1) holds and there is a matching of size
|A| i.e. a perfect matching.

+ +

e B is M-saturated else there exists an M-
augmenting path.

e If a € A1\ {ag} then ¢(a) € B;.

o o O —O

agp (Ka) a

e If b e By then ¢~ 1(b) € A7\ {ag}-

0 e ——(—— OO0
dg b a
So
|B1] = |A1] — 1.
e N(A1) C By

So
IN(A)| = |A1] -1

and (1) fails to hold.
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Edge Covers
A set of vertices X C V is a covering of G =

(V, E) if every edge of E contains at least one
endpoint in X.

{®}isacovering

Lemma 1 If X isa covering and M is a match-
ing then |X| < |M]|.

Proof Let M = {(a1,b;) : 1 < i < k}.
Then |X| > |M]| since a; € X or b; € X for
1<i<kandai,...,b; are distinct. O
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Konig’'s Theorem

Let u(G) be the maximum size of a matching.
Let B(G) be the minimum size of a covering.
Then

m(G) < B(G).

Theorem 4 IfG is bipartite then u(G) = B(G).

Proof Let M be a maximum matching.
Let Sp be the M-unsaturated vertices of A.
Let S O Sp be the A-vertices which are reach-
able from S by M-alternating paths.

Let T be the M-neighbours of S\ Sp.

So S Sy, S s s S

Let X = (A\S)UT.

e | X|=|M]|.

|T| = |S\So|. The remaining edges of M cover
A\ S exactly once.

e X is a cover.

There are no edges (z,y) wherez € S and y €
B\ T. Otherwise, since y is M-saturated (no
M-augmenting paths) the M-neightbour of y
would have to be in S, contradictingy ¢ T. O



