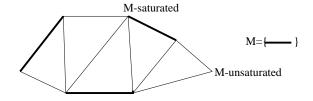
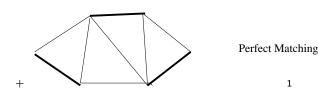
+ + +

Matchings

A matching M of a graph G=(V,E) is a set of edges, no two of which are incident to a common vertex.



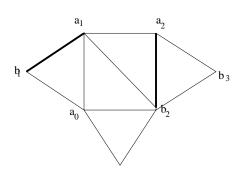


+ +

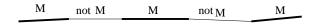
M is a \max maximum matching of G if no matching M' has more edges.

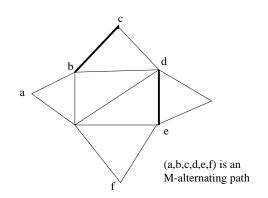
Theorem 1 M is a maximum matching iff M admits no M-augmenting paths.

Proof Suppose M has an augmenting path $P=(a_0,b_1,a_1,\ldots,a_k,b_{k+1})$ where $e_i=(a_{i-1},b_i)\notin M,\ 1\leq i\leq k+1$ and $f_i=(b_i,a_i)\in M,\ 1\leq i\leq k$.



M-alternating path





An M-alternating path joining 2 M-unsaturated vertices is called an M-augmenting path.

+ 2

+ +

- |M'| = |M| + 1.
- \bullet M' is a matching

For $x \in V$ let $d_M(x)$ denote the degree of x in matching M, So $d_M(x)$ is 0 or 1.

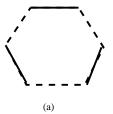
$$d_{M'}(x) = \begin{cases} d_M(x) & x \notin \{a_0, b_1, \dots, b_{k+1}\} \\ d_M(x) & x \in \{b_1, \dots, a_k\} \\ d_M(x) + 1 & x \in \{a_0, b_{k+1}\} \end{cases}$$

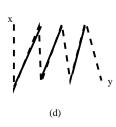
So if ${\cal M}$ has an augmenting path it is not maximum.

 $M' = M - \{f_1, f_2, \dots, f_k\} + \{e_1, e_2, \dots, e_{k+1}\}.$

Suppose M is not a maximum matching and |M'| > |M|. Consider $H = G[M \nabla M']$ where $M \nabla M' = (M \backslash M') \cup (M' \backslash M)$ is the set of edges in *exactly* one of M, M'.

Maximum degree of H is 2 $- \le 1$ edge from M or M'. So H is a collection of vertex disjoint alternating paths and cycles.





x,y M-unsaturated

 $|M^\prime|>|M|$ impplies that there is at least one path of type (d).

Such a path is M-augmenting

<u>L</u>

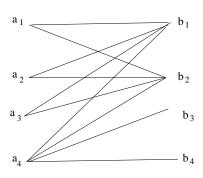
+

5

Theorem 2 G contains a matching of size |A| iff

Hall's Theorem

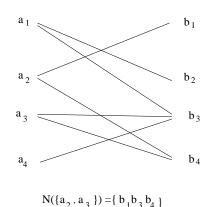
$$|N(S)| \ge |S|$$
 $\forall S \subseteq A.$ (1)



 $N(\{a_1,a_2,a_3\})=\{b_1,b_2\}$ and so at most 2 of a_1,a_2,a_3 can be saturated by a matching.

Let $G = (A \cup B, E)$ be a bipartite graph with bipartition A, B.

For $S \subseteq A$ let $N(S) = \{b \in B : \exists a \in S, (a, b) \in E\}$.

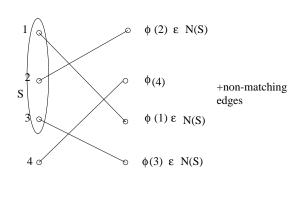


Clearly, $|M| \leq |A|, |B|$ for any matching M of G.

+ 6

+ +

Only if: Suppose $M = \{(a, \phi(a)) : a \in A\}$ saturates A.



 $|N(S)| \ge |\{\phi(s) : s \in S\}|$ = |S|

and so (1) holds.

If: Let $M=\{(a,\phi(a)): a\in A'\}$ $(A'\subseteq A)$ is a maximum matching. Suppose $a_0\in A$ is M-unsaturated. We show that (1) fails.

+

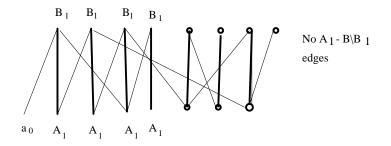
+

ullet B_1 is M-saturated else there exists an M-

Let

 $A_1 = \{a \in A : \text{such that } a \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.}\}$

 $B_1 = \{b \in B : \text{ such that } b \text{ is reachable from } a_0 \text{ by an } M\text{-alternating path.} \}$



+

+ +

Marriage Theorem

Theorem 3 Suppose $G=(A\cup B,E)$ is k-regular. $(k\geq 1)$ i.e. $d_G(v)=k$ for all $v\in A\cup B$. Then G has a perfect matching.

Proof

$$k|A| = |E| = k|B|$$

and so |A| = |B|.

Suppose $S\subseteq A$. Let m be the number of edges incident with S. Then

$$k|S| = m \le k|N(S)|.$$

So (1) holds and there is a matching of size |A| i.e. a perfect matching.

- augmenting path.
- If $a \in A_1 \setminus \{a_0\}$ then $\phi(a) \in B_1$.

• If $b \in B_1$ then $\phi^{-1}(b) \in A_1 \setminus \{a_0\}$.

So

+

$$|B_1| = |A_1| - 1.$$

• $N(A_1) \subseteq B_1$

So

$$|N(A_1)| = |A_1| - 1$$

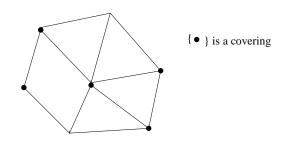
and (1) fails to hold.

+ 10

+ +

Edge Covers

A set of vertices $X \subseteq V$ is a covering of G = (V, E) if every edge of E contains at least one endpoint in X.



Lemma 1 If X is a covering and M is a matching then $|X| \leq |M|$.

Proof Let $M=\{(a_1,b_i): 1\leq i\leq k\}$. Then $|X|\geq |M|$ since $a_i\in X$ or $b_i\in X$ for $1\leq i\leq k$ and a_1,\ldots,b_k are distinct. \square

+ + +

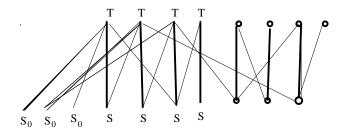
Konig's Theorem

Let $\mu(G)$ be the maximum size of a matching. Let $\beta(G)$ be the minimum size of a covering. Then

$$\mu(G) \leq \beta(G)$$
.

Theorem 4 If G is bipartite then $\mu(G) = \beta(G)$.

 $\begin{array}{ll} \textbf{Proof} & \text{Let } M \text{ be a maximum matching.} \\ \text{Let } S_0 \text{ be the } M\text{-unsaturated vertices of } A. \\ \text{Let } S \supseteq S_0 \text{ be the } A\text{-vertices which are reachable from } S \text{ by } M\text{-alternating paths.} \\ \text{Let } T \text{ be the } M\text{-neighbours of } S \setminus S_0. \\ \end{array}$



Let $X = (A \setminus S) \cup T$.

• |X| = |M|.

 $|T| = |S \setminus S_0|$. The remaining edges of M cover $A \setminus S$ exactly once.

X is a cover.

There are no edges (x,y) where $x \in S$ and $y \in B \setminus T$. Otherwise, since y is M-saturated (no M-augmenting paths) the M-neightbour of y would have to be in S, contradicting $y \notin T$. \square