Lemma 1 Let the components of G be
Trees C1,C5,...,Cr,Suppose e = (u,v) ¢ E,u € C;, v €
C;.
J

\/W @ i=j= w@+e) = w(@).

b) 4 | = w(G+e) =w(G) —1.
A tree is a graph which is (b) i 7 3 ( ) (@

@

(a) Connected and @ Q Q

(b) has no cycles (acyclic). Q
(b)

Proof Every path P in G 4 e which is not in G

must contain e. Also, Lemma?2 G = (V, E) is acyclic (forest) with (tree)
w(G + e) < w(G). components C1,C»,...,Cg. |V| =n. e = (u,v) ¢

E,ueci,UECj.

Suppose

(2= uo,un, s up =t Up 1 =05, g = y) (a) ¢« = j = G + e contains a cycle.

is a path in G + e that uses e. Then clearly z € C;

andy € Cj.
(b) © # 7 = G + e is acyclic and has one less com-

(a) follows as now no new relations = ~ y are added. ponent.

(b) Only possible new relations = ~ y are for x € C; (c) G has n — k edges.

andy € C;. Butu ~ vin G+ e andso C; UCj

becomes (only) new component. m|



(a) u, v € C; implies there exists a path (v = ug, u1,...

v)in G.

So G + e contains the cycle ug, u1, ..., ug, ug.

(c) Suppose E = {eq, ea, ..
foro0<i<r.

Claim: G; has n — i components.

Induction on <.

i = 0: G has no edges.

1 > 0: G;_1 is acyclic and so is G;. It follows from
part (a) that e; joins vertices in distinct components of
G;_1. It follows from (b) that G; has one less compo-
nent than G;_1.

End of proof of claim

Thus r = n — k (we assumed G had k components).
O

yerrand G; = (V,{e1,eo, ...

Y Ug =

, €

Suppose G + e contains the cycle C. e € C else C'is

a cycle of G.
C = (u=ug,u1,..-,Up = v,uQ).

But then G contains the path (ug, u1,- - -
to v — contradiction.

,ug) fromu

The drop in the number of components follows from
Lemma 1.

The rest follows from

Corollary 1 If atree T has n vertices then
(@) Ithasn — 1 edges.
(b) It has at least 2 vertices of degree 1, (n > 2).

Proof (a) is part (c) of previous lemma. £ = 1
since T is connnected.

(b) Let s be the number of vertices of degree 1 in T'.
There are no vertices of degree 0 — these would form
separate components. Thus

2n — 2 = Z dr(v) > 2(n —s) + s.
veV

So s > 2. O



Theorem 1 Suppose |V| =nand |[E| =n — 1. The
following three statements become equivalent.

(&) G is connected.

(b) G is acyclic.

(c) Gis atree.

Let E = {e1,e2,...,e,_1}and
G; = (V,{e1,e2,...,e;}for0<i<n—1.

Corollary 2 If v is a vertex of degree 1 in a tree T’
then T — v is also a tree.

Proof Suppose T has n vertices and n edges.
Then T' — v has n — 1 vertices and n — 2 edges. It
acyclic and so must be a tree. m|
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(a) = (b): Go has n components and G,_1 has
1 component. Addition of each edge e; must reduce
the number of components by 1 — Lemma 2(b). Thus
G;_1 acyclic implies G; is acyclic. (b) follows as Gg
is acyclic.

(b) = (c): We need to show that G is connected.
Since G,,_1 is acyclic, w(G;) = w(G;_1) — 1 for

each i — Lemma 2(b). Thus w(G,_1) = 1.

(¢) = (a): trivial.
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Cut edges

cut edge

eis acut edge of G if w(G — e) > w(QG).

Theorem 2 e = (u,v) is a cut edge iff e is not on any
cycle of G.

Proof w increases iff there exist x ~ y € V such
that all walks from z to y use e.

Suppose there is a cycle (u, P, v, u) containing e. Then
if W = z,Wq,u,v, Ws,y is a walk from z to y using
e, ¢, W1, P,W>,y is a walk from z to y that doesn’t
use e. Thus e is not a cut edge.
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If e is not a cut edge then G— e contains a path P from
u 10 v (u ~ v in G and relations are maintained after
deletion of €). So (v,u, P,v) is a cycle containing e.

O

Corollary 3 A connected graph is a tree iff every edge
is a cut edge.
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Theorem 3 Let T be a spanning tree of G = (V, E),
|V| = n. Suppose e = (u,v) € E\T.

(a) T + e contains a unique cycle C(e).

(b) f € C(e) implies that T 4+ e — f is a spanning
tree of G.
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Corollary 4 Every finite connected graph G contains
a spanning tree.

Proof Consider the following process: starting with
Gl

1. If there are no cycles — stop.

2. If there is a cycle, delete an edge of a cycle.

Observe that (i) the graph remains connected — we
delete edges of cycles. (ii) the process must terminate
as the number of edges is assumed finite.

On termination there are no cycles and so we have a
connected acyclic spanning subgraph i.e. we have a
spanning tree. |
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Proof (a) Lemma 2(a) implies that T" 4 e has a
cycle C. Suppose that T' 4 e contains another cycle
C'# C. Letedgeg e C'\C. T' =T +e—gis
connected, has n — 1 edges. But T’ contains a cycle
C, contradictng Lemma 2(b).

(b) T + e — f is connected and has n — 1 edges.
Therefore it is a tree. |
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Maximum weight trees
Greedy Algorithm
G = (V, E) is a connected graph.
Sort edges so that E = {eq, e, ..., en} Where

w: E — R. w(e) is the weight of edge e. wley) > w(ep) > -+ > w(em).

For spanning tree T', w(T") = Y e w(e). begin
T:=10
fori =1,2,...,mdo
begin
if T+ e; does not contain a cycle
thenT «+ T +¢;

Problem: find a spanning tree of maximum weight.

end
Output T
end

Greedy always adds the maximum weight edge which
does not make a cycle with previously chosen edges.
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Suppose (1) is false. There exists & > 0 such that

*) > . < * )
Theorem 4 The tree constructed by GREEDY has max- wleg) 2 wlfi), 1< i <kandw(ep) <w(fy)

imum weight.

Eachof f;, 1 < i < kmakesacyclewithe?,e5,...,ef_.
Proof Let the edges of the greedy tree be e¥, €%, ..., ex 1, Otherwise one of them would have been chosen in
in order of choice. Note that w(e}) > w(ej, ;) since preference to ej.
neither makes a cycle with ej,e3,...,e_;.

Let the components of the forest
Let f1, fo,..., fn_1 be the edges of any other tree (V,{ei,e5,...,e5_1}) be C1,Co,...,Cp_gy1. Each
where w(f1) > w(fa) > - w(fp_1). fi,» 1 < i < k has both of its endpoints in the same

component.
We show that

wed) >w(f) 1<i<n-1. ()
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Let p; be the number of £; which have both endpoints How many trees? — Cayley’s Formula
in C; and let v; be the number of vertices of C;. Then

n=4
prtpo+pp g1 = k (2 /\\ \/\
4 12

vitvot vy g1 = 0 3)

It follows from (2) and (3) that there exists ¢ such that

n=5
we > v @) %\ M AN\
0 60

[Otherwise
n—k+1 n—k+1
om0 (m—1)
i=1 i=1
S8 A /N <
= > v-(n-k+1) ] W
i=1
= k-1.
But (4) implies that the edges f; such that f; C Ci N\/
contain a cycle. m| /W
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Prufer’'s Correspondence

There is a 1-1 correspondence ¢y, between spanning
trees of Ky, (the complete graph with vertex set V)
and sequences V"2, Thus for n > 2

T(Kp) = n""2 Cayley’s Formula.

Assume some arbitrary ordering V. = {v1 < vy <

* < Un}.
v (T):
begin
T =T,
fori=1ton—2do
begin
s; 1= neighbour of least leaf ¢; of T;.
T =T; —¥;.
AR 6,4,5,14,2,6,11,14,8,5,11,4,2
end ¢V(T) = 85182...8,-2
end
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Lemma 3 v € V(T') appears exactly dy(v)—1 times
in ¢y (T).

Proof = Assume n = |V(T")| > 2. By induction on
n.
n = 2: ¢y (T) = A\ = empty string.

Assume n > 3:

¢y (T) = s1¢v,(T1) where V3 =V — {s1}.

s1 appears dpy (s1) — 1+ 1 = dp(s1) — 1 times -

induction.

v 7 s1 appears dr, (v) — 1 = dp(v) — 1 times —

induction. |
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Number of trees with a given degree sequence

Corollary5 If dy +do + --- + dn = 2n — 2 then
the number of spanning trees of K, with degree se-
quence dq,dp,...,dn is

- (n —2)!
(dl—l,dgil,z...,dn—l) =

Proof From Prufer’s correspondence and Lemma
3 this is the number of sequences of length n — 2 in
which 1 appears d1 — 1 times, 2 appears d, — 1 times
and so on. m|
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T (d1— DI(da— )l (dn — DI

Construction of ¢‘71

Inductively assume that for all | X| < n there is an
inverse function ¢)_(1. (True for n = 2).

Now define ¢‘71 by

(]5‘_/1(8182 e .8p_0) = (]5‘_/11(52 ...8p—2) plus edge s141,
where ¢4 = min{s: s ¢ s1,52,...8,_2}and V3 =

V — {¢1}. Then

v (oy  (s152. .. 8n-2)) = 31¢V1(¢‘_/11(32 - 8p—2))

= 8182...8p—2.

Thus ¢y has an inverse and the correspondence is
established.
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