## Paths and Walks

 $W=(v_1,v_2,\ldots,v_k)$  is a walk in G if  $(v_i,v_{i+1})\in$ E for  $1 \leq i < k$ .

A path is a walk in which the vertices are distinct.

 $W_1$  is a path, but  $W_2, W_3$  are not.

+



 $W_1 = a,b,c,e,d$  $W_2 = a,b,a,c,e$ 

 $W_3 = g,f,c,e,f$ 

for  $v_1, v_k$ 

A walk is *closed* if  $v_1=v_k$ . A *cycle* is a closed walk in which the vertices are distinct except

b, c, e, d, b is a cycle.

b, c, a, b, d, e, c, b is not a cycle.



## Connected components

We define a relation  $\sim$  on V.  $a \sim b$  iff there is a walk from a to b.





1

3

 $a \sim b$  but  $a \not\sim d$ .

**Claim:**  $\sim$  is an equivalence relation.

**reflexivity**  $v \sim v$  as v is a (trivial) walk from v to v.

**Symmetry**  $u \sim v$  implies  $v \sim u$ .

 $(u = u_1, u_2 \dots, u_k = v)$  is a walk from u to v implies  $(u_k, u_{k-1}, \dots, u_1)$  is a walk from v to u.

**Transitivity**  $u \sim v$  and  $v \sim w$  implies  $u \sim w$ .  $W_1 = (u = u_1, u_2 \dots, u_k = v)$  is a walk from u to v and  $W_2 = (v_1 = v, v_2, v_3, \dots, v_{\ell} =$ w) is a walk from v to w imples that  $(W_1, W_2) = (u_1, u_2, \dots, u_k, v_2, v_3, \dots, v_\ell)$  is a walk from u to w.

The equivalence classes of  $\sim$  are called connected components.

In general  $V = C_1 \cup V_2 \cup \cdots \cup C_r$  where  $C_1, C_2, \ldots$ ,  $C_r$  are the connected comonents.

We let  $\omega(G)(=r)$  be the number of components of G.

G is connected iff  $\omega(G)=1$  i.e. there is a walk between every pair of vertices.

Thus  $C_1, C_2, \ldots, C_r$  induce connected subgraphs  $G[C_1], \ldots, G[C_r]$  of G

4

For a walk W we let  $\ell(W)=$  no. of edges in W.



**Lemma 1** Suppose W is a walk from vertex a to vertex b and that W minimises  $\ell$  over all walks from a to b. Then W is a path.

**Proof** Suppose  $W=(a=a_0,a_1,\ldots,a_k=b)$  and  $a_i=a_j$  where  $0\leq i< j\leq k$ . Then  $W'=(a_0,a_1,\ldots,a_i,a_{j+1},\ldots,a_k)$  is also a walk from a to b and  $\ell(W')=\ell(W)-(j-i)<\ell(W)$  – contradiction.

**Corollary 1** If  $a \sim b$  then there is a path from a to b.

So G is connected  $\leftrightarrow \forall a,b \in V$  there is a path from a to b.

+ 5

+ +

In BFS we construct  $A_0, A_1, A_2, \ldots$ , by

 $A_{t+1} = \{ w \notin A_0 \cup A_1 \cup \cdots \cup A_t : \exists \text{ an edge } (u,w) \text{ such that } u \in A_t \}.$ 

Note: no edges (a,b) between  $A_k$  and  $A_\ell$  for  $\ell-k\geq 2$ , else  $w\in A_{k+1}\neq A_\ell$ . (1)

In this way we can find all vertices in the same component  ${\it C}$  as  ${\it v}$ .

By repeating for  $v' \notin C$  we find another component etc.

## Breadth First Search - BFS

Fix  $v \in V$ . For  $w \in V$  let

d(v,w) = length of shortest path from v to w.

For t = 0, 1, 2, ..., let



 $A_0 = \{v\}$  and  $v \sim w \leftrightarrow d(v, w) < \infty$ .

+ 6

+ +

## Characterisation of bipartite graphs

**Theorem 1** G is bipartite  $\leftrightarrow G$  has no cycles of odd length.

**Proof**  $\rightarrow$ :  $G = (X \cup Y, E)$ .



Suppose  $C=(u_1,u_2,\ldots,u_k,u_1)$  is a cycle. Suppose  $u_1\in X$ . Then  $u_2\in Y,u_3\in X,\ldots,u_k\in Y$  implies k is even.

 $\leftarrow$  Assume G is connected, else apply following argument to each component.

Choose  $v \in V$  and construct  $A_0, A_1, A_2, \ldots$ , by BFS.

 $X = A_0 \cup A_2 \cup A_4 \cup \cdots$  and  $Y = A_1 \cup A_3 \cup A_5 \cup \cdots$ 

8

+ +

We need only show that X and Y contain no edges and then all edges must join X and Y. Suppose X contains edge (a,b) where  $a\in A_k$  and  $b\in A_\ell.$ 

(i) If  $k \neq \ell$  then  $|k - \ell| \geq 2$  which contradicts (1)





There exist paths  $(v=v_0,v_1,v_2,\ldots,v_k=a)$  and  $(v=w_0,w_1,w_2,\ldots,w_k=b).$ 

Let 
$$j = \max\{t: v_t = w_t\}$$
.

$$(v_j, v_{j+1}, \ldots, v_k, w_k, w_{k-1}, \ldots, w_j)$$

is an odd cycle — length 2(k-j)+1 — contradiction.  $\hfill\Box$ 

- 9