+ + + +

Graph Theory

Simple Graph G = (V, E). $V = \{\text{vertices}\}, E = \{\text{edges}\}.$

$$\begin{split} &V{=}\{a,\!b,\!c,\!d,\!e,\!f,\!g,\!h,\!k\} \\ &E{=}\{(a,\!b),\!(a,\!g),\!(a,\!h),\!(a,\!k),\!(b,\!c),\!(b,\!k),\!...,\!(h,\!k)\} \end{split} \quad |E|{=}16. \end{split}$$

Eulerian Graphs

Can you draw the diagram below without taking your pen off the paper or going over the same line twice?

+ 1

+

Bipartite Graphs

G is bipartite if $V=X\cup Y$ where X and Y are disjoint and every edge is of the form (x,y) where $x\in X$ and $y\in Y.$

In the diagram below, A,B,C,D are women and a,b,c,d are men. There is an edge joining x and y iff x and y like each other. The thick edges form a "perfect matching" enabling everybody to be paired with someone they like. Not all graphs will have perfect matching!

+ 2

-

Vertex Colouring

Let $C = \{colours\}$. A vertex colouring of G is a map $f: V \to C$. We say that $v \in V$ gets coloured with f(v).

The colouring is *proper* iff $(a,b) \in E \Rightarrow f(a) \neq f(b)$.

The Chromatic Number $\chi(G)$ is the minimum number of colours in a proper colouring.

Application: $V = \{\text{exams}\}$. (a,b) is an edge iff there is some student who needs to take both exams. $\chi(G)$ is the minimum number of periods required in order that no student is scheduled to take two exams at once.

4

3

-

Subgraphs

G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. G' is a *spanning* subgraph if V' = V.

$$G[V'] = (V', \{(u, v) \in E : u, v \in V'\})$$

is the subgraph of G induced by V'.

Similarly, if $E_1 \subseteq E$ then $G[E_1] = (V_1, E_1)$ where

is also induced (by E_1).

$$V_1 = \{v \in V_1: \ \exists e \in E_1 \ ext{such that} \ v \in e\}$$
 also $induced$ (by E_1).

Isomorphism

 $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection $f:V_1 o V_2$ such that

$$(v,w) \in E_1 \leftrightarrow (f(v),f(w)) \in E_2.$$

f(a)=A etc.

Complete Graphs

$K_n = ([n], \{(i, j) : 1 \le i < j \le n\})$

is the complete graph on n vertices.

$$K_{m,n} = ([m] \cup [n], \{(i,j) : i \in [m], j \in [n]\})$$

is the complete bipartite graph on m+n ver-

(The notation is a little imprecise but hopefully clear.)

K 5

 $K_{2,3}$

Matrices and Graphs

Incidence matrix M: $V \times E$ matrix.

$$M(v,e) = \begin{cases} 1 & v \in e \\ 0 & v \notin e \end{cases}$$

Vertex Degrees

 $d_G(v)$ = degree of vertex v in G

 $=\,\,$ number of edges incident with v

 $\begin{array}{rcl} \delta(G) & = & \min_v d_G(v) \\ \Delta(G) & = & \max_v d_G(v) \end{array}$

G $d_{G}(a)=2$, $d_{G}(g)=4$ etc. $\delta(G)=2$, $\Delta(G)=4$.

10

Adjacency matrix $A: V \times V$ matrix.

$$A(v,w) = \left\{ egin{array}{ll} 1 & v,w \ ext{adjacent} \ 0 & ext{otherwise} \end{array}
ight.$$

+ + +

Theorem 1

$$\sum_{v \in V} d_G(v) = 2|E|$$

Proof Consider the incidence matrix M. Row v has $d_G(v)$ 1's. So

$$\# \ \text{1's in matrix} \ M \ \text{is} \ \sum_{v \in V} d_G(v).$$

Column e has 2 1's. So

1's in matrix M is 2|E|.

Corollary 1 In any graph, the number of vertices of odd degree, is even.

Proof Let $ODD = \{ \text{odd degree vertices} \}$ and $EVEN = V \setminus ODD$.

$$\sum_{v \in ODD} d(v) = 2|E| - \sum_{v \in EVEN} d(v)$$

is even.

So |ODD| is even. \Box

+ 13 + 14