#### +

#### **Selections and Binomial Coefficients**

#### **Permutations**

Let X be any fixed set of size n e.g.  $X = [n] = \{1, 2, ..., n\}$ .

A permutation of X is a sequence of length n in which each element of X appears exactly once

p(n) denotes the number of permutations of  $\boldsymbol{X}$ .

E.g. 
$$n = 3$$
,  $X = \{a, b, c\}$ .  $p(3) = 6$ .

abc, acb, bac, bca, cab, cba,

$$p(1) = 1$$
  
 $p(n) = np(n-1), n > 2$ 

n choices for the first element  $x_1$ . For each choice of  $x_1$  there are p(n-1) ways of completing the sequence.

Thus

$$p(n) = n!$$

<u>+</u> 1

+ +

## Ordered selection with repetition

q(n,r) denotes the number of sequences of length r with elements from X.

E.g. 
$$n = 3, r = 2, X = \{a, b, c\}, q(3, 2) = 9.$$

aa, ab, ac, ba, bb, bc, ca, cb, cc.

$$q(n,0) = 1$$
  
 $q(n,r) = nq(n,r-1), r \ge 1$ 

So

$$q(n,r) = n^r$$
.

## Ordered selection without repetition

+

p(n,r) is the number of sequences of length r in which each element of X appears at most once.

E.g. 
$$n = 4$$
,  $r = 2$ ,  $X = \{a, b, c, d\}$ ,  $p(4, 2) = 12$ .

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

$$p(n,0) = 1$$
  
 $p(n,r) = np(n-1,r-1), r \ge 1$ 

n choices for the first element  $x_1$ . For each choice of  $x_1$  there are p(n-1,r-1) ways of completing the sequence.

$$p(n,r) = n(n-1)\cdots(n-r+1)$$
$$= \frac{n!}{(n-r)!}$$

+ 2

#### Unordered selection without repetition

What if the order of selection is immaterial?

c(n,r) is the number of ways of choosing a set of r elements from [n].

$$p(n,r) = r!c(n,r).$$

Each of the c(n, r) unordered choices of a set can be ordered in r! ways to make a sequence of length r from [n].

$$c(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Here n! = 0, n < 0 and 0! = 1

+

3

+

+ + + +

## Unordered selection with repetition

f(n,r) is the number of ways of choosing r elements from a set of size n where order does not matter and repetitions are allowed.

$$f(n,r) = {n+r-1 \choose r}.$$

What if each element must be chosen at least once? If n = 3, k = 4:

$$2R + 1B + 1W$$
  
 $1R + 2B + 1W$   
 $1R + 1B + 2W$ 

F .

+ +

# **Summary of Selection**

S is a set of n distinct objects and we must choose r objects:

Order matters No repetion allowed: P(n,r)

Order matters Repetion allowed:  $n^r$ 

Order does not matter No repetion allowed:  $\binom{n}{n}$ 

Order does not matter Repetion allowed:  $\binom{n+r-1}{r}$ 

Let

$$X = \{(x \in \{1, 2, ...\}^n : x_1 + \dots + x_n = r\}$$
  
$$X' = \{x' \in \{0, 1, 2, ...\}^n : x'_1 + \dots + x'_n = r - n\}.$$

We claim that  $|X|=|X'|={r-1\choose n-1}.$ 

Consider  $f:X\to X'$  where  $f(x_1,x_2,\ldots,x_n)=(x_1-1,x_2-1,\ldots,x_n-1).$  f is a bijection with inverse g  $g(x_1',x_2',\ldots,x_n')=(x_1'+1,x_2'+1,\ldots,x_n'+1).$  This implies

$$|X| = |X'| = {n + (r - n) - 1 \choose n - 1} = {r - 1 \choose n - 1}$$

+ 6