DISCRETE MATHEMATICS 21228 — HOMEWORK 9

JC

Due in class Wednesday November 19. You may collaborate but
must write up your solutions by yourself.

Late homework will not be accepted. Homework must either be
typed or written legibly in blue or black ink on alternate lines, illegible
homework will be returned ungraded (so you can rewrite it legibly).

Please write the name of your recitation instructor and the time and
place of your recitation at the top of your homework.

IMPORTANT: We are now following the convention that all graphs
are finite unless explicitly stated to be infinite.

(1) Let a and b be distinct vertices in a connected graph G. An
FEulerian trail from a to b is a trail (a walk without repeated
edges) from a to b which visits each edge exactly once. Prove
that such a trail exists if and only if @ and b are the only vertices
of odd degree in G.

Consider a graph H obtained from G by adding a new vertex
u and edges au and ub. Now G has an Eulerian trail from a to
b <= H has an Eulerian cycle <= all vertices of H have
even degree in H <= only a and b have odd degree in G.
For a graph H let py(n) be the number of vertex colourings
of H using colours 1,...n. Find a formula for py(n) for the
following graphs H:

(a)

The complete graph K, (the graph with m vertices where
every pair is joined by an edge).

By an easy counting argument there are n(n —1)...(n —
m + 1). Note that this formula works even for n < m,
giving the correct answer of zero colourings.

The m-cycle C,,.

For notational simplicity let f,,(n) = pc,,(n). Obviously
fs(n) = n(n—1)(n—2) because C3 = Kj3. For the purposes
of this problem it is convenient to make the convention
that a “2-cycle” is two points joined by an edge, so that

fa(n) =n(n—1).
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Let m > 4 and let vq,...v,, be the vertices, where the
edges are v;v;11 (for i < m) and v,,v;

Consider the vertices v; and v3. A colouring which gives
them different colours can be considered as a colouring of
an m— 1 cycle formed by the vertices vy, vs, ... v, together
with a choice of an appropriate colour for vs. So there are
(n — 2) fr—1(n) such colourings using n colours.

Similarly a colouring which gives v; and v3 the same colour
can be considered as a colouring of an m — 2 cycle formed
by vy, vy, . . . Uy, together with the choice of an appropriate
colour for vy. So there are (n—1) f,—2(n) colourings of this
sort using n colours.

This gives us the recursion

fm(n) = (n = 2) fna(n) + (n = 1) frna(n)

The first few values are fo(n) = n(n — 1), f3(n) =n
1)(n — 2), fa(n) = n(n —1)(n®> —3n +3), fs5(n) = n(n —
1)(n —2)(n%?—2n+2).

We can obtain a closed form for this expression as follows.
Start by noticing that f3(n) = (n — 1)(n? — 2n), fi(n) =
(n—1)(n®—3n%+3n), f5(n) = (n—1)(n*—4n®+6n2—4n).
At this point we recognise the binomials and make the
conjecture that f,,(n) = (n—1)((n—1)™"'+(—1)™). This
can now be verified using the recursion we gave above.
Cultural note: let G by any graph and let @ and b be
vertices not joined by an edge. Then if Gy = G + ab and
(G is the graph obtained by identifying the vertices a and
b, we can see by considerations as above that pg(n) =
PGo(n) + pa, (n). With a little thought this can be used to
show that pg(n) is always a polynomial in n with integer
coefficients.

The graph obtained from a 6-cycle by joining two opposite
vertices.

Start by noticing that if we are colouring Cy and we pre-
scribe the colours of two adjacent points, then there are
n? — 3n + 3 ways of colouring the other two points. Either
use the formula for pg, (n) and symmetry or do it directly.
The graph is obtained by taking two copies of C'y and gluing
them together. Let ab be the common edge. Then there
are n(n — 1) ways of colouring ab and n? — 3n + 3 ways of
colouring the rest of each copy of Cy4. This gives a total of
n(n —1)(n? — 3n + 3)? many colourings.
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The work we did before gives us an easy check: by the first
argument we gave for C,,, we should have the equation
pos(n) = pr,(n) + pm, (n) where Hy is the graph from this
question and H; is the graph in which two triangles are
joined at a vertex. Easily pg,(n) = n(n — 1)%(n — 2)2.
Let us compare values when n = 11. We have easily
Pce(10) = 1000010, pp,(11) = 910910, pg, (11) = 89100.
Indeed 1000010 = 910910 + 89100, giving us some faith in
our answer.

(d) The tree with vertices {a, b, ¢, d, e} and edges {ab, ac, bd, be}.
n(n —1)%

(3) Prove that a graph is planar if and only if it can be drawn on
the surface of a sphere.

Working in R?® consider a spherical surface S of radius 1 with
its centre at (0,0, 1). Formally S is given by z2+y?+(z—1)% = 1.
Let N = (0,0,2) (that is the “north pole” of S) and let P be
the plane z = 0 (that is the “zy-plane”). Define a function f
from S\ {N} to P as follows: f(M) is the unique point where
the line N M meets the plane P.

Now let G be a planar graph and fix a picture of G in the
plane P. Then applying f~! we get a picture of G on the surface
S. Conversely if we have a picture of a graph G on the surface
S, then we may move it so that it does not involve the point N
and then apply f to get a picture in the plane P.

(4) (Tricky) Find a graph which can be drawn on the surface of a
torus with chromatic number greater than four. Extra credit if
you can achieve the optimal value of seven!

Surprisingly we can even draw a K; on the surface of a torus.
To see this notice that we can make a torus by starting with a
square, rolling it up to get a cylinder and then joining the ends
of the cylinder: mathematicians typically express this by saying
we are “identifying opposite edges” (you may like to think of
the old arcade game Asteroids, where objects which went off
one side of the screen came back on the opposite side).

Now contemplate the following picture (sorry it is so pixel-
lated!)



(5) Show that a graph G has at least (X(QG )) edges.

Let n = x(G), and fix a n-colouring ¢ of the vertices of G
using colours 1,...n. We claim that for every pair {i,j} of
colours there is an edge ab with c(a) = ¢ and ¢(b) = j. Suppose
for a contradiction this is not so; we may as well assume that
there is no edge joining a vertex of colour 1 to a vertex of
colour n. Define a new function d as follows: c(v) < n =
c(v) = d(v), ¢(v) =n = d(v) = 1. d is an n — 1-colouring,
contradiction!

So there are at least (’2’) edges in G.



