
DISCRETE MATHEMATICS 21228 — HOMEWORK 5
SOLUTIONS

JC

(1) R(a, b, c) is (by definition) the least N such that every colour-
ing of the pairs from an N -element set in three colours (say red,
green and blue) has a homogeneous red set of size a, a homo-
geneous blue set of size b, or a homogeneous green set of size
c.
(a) Find R(2, 2, n).

A colouring with no red or blue homogeneous sets of size
2 must colour every pair green. So clearly R(2, 2, n) = n.

(b) Prove that for a, b, c > 2 we have R(a, b, c) ≤ R(a−1, b, c)+
R(a, b− 1, c) + R(a, b, c− 1).
We just imitate the induction step in the 2-colour finite
Ramsey theorem. Let N = R(a− 1, b, c) + R(a, b− 1, c) +
R(a, b, c− 1) and consider a red-blue-green colouring F of
the pairs from a set X with N elements. Choose x ∈ X
and partition X as R ∪ B ∪G, where R = {y ∈ X \ {x} :
F ({x, y}) = red} and similarly for B and G with blue and
green in place of red.
Clearly at least one of the inequalities |R| ≥ R(a− 1, b, c),
|B| ≥ R(a, b−1, c), |G| ≥ R(a, b, c−1) must hold. Suppose
that |R| ≥ R(a− 1, b, c). Then there must be H ⊆ R such
that H is either red homogeneous of size a− 1, blue homo-
geneous of size b or green homogeneous of size c. If H is red
homogeneous of size a−1 then H∪{x} is red homogeenous
of size a, so in all three cases we have a homogeneous set
of the required type. The cases |B| ≥ R(a, b − 1, c) and
|G| ≥ R(a, b, c− 1) are entirely similar.

(2) Find an upper bound for R(n, n, n).
We give a couple of possible bounds. One is better than the

other but requires a bit more work.
Bound 1: R(a, b, c) ≤ 3a+b+c.
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Proof: by induction on a + b + c, starting from the trivial
base case a = b = c = 2. The successor step works because

R(a, b, c) ≤ R(a−1, b, c)+R(a, b−1, c)+R(a, b, c−1) ≤ 3×3a+b+c−1 = 3a+b+c.

So R(n, n, n) ≤ 33n.

Bound 2: R(a, b, c) ≤ (a+b+c−3)!
(a−1)!(b−1)!(c−1)!

.

Proof: again by induction on a + b + c. This gives a bound

R(n, n, n) ≤ (3n−3)!
((n−1)!)3

.

(3) Use the probabilistic method to find a lower bound for R(n, n, n).
We estimate an upper bound for the probability of getting a

homogeneous set of size n in a random red-blue-green colouring

of pairs from an N -element set. Here there are 3(N
2 ) possi-

ble colourings and we define the probability space so that each
colouring is equally likely.

The probability that a given set of size n is homogeneous is

3/3(n
2), so we get an upper bound

(N
n)

3(
n
2)−1

for the probability of

seeing a homogeneous set of size n.

Accordingly R(n, n) > N for any N such that
(

N
n

)
< 3(n

2)−1,
and we need to choose N as large as we can satisfying this
inequality. To do this we use the estimates

(
N
n

)
≤ Nn

n!
and

n! ≥
√

2πn(n/e)n, from which it follows that any N satisfying

Nn

√
2πn(n/e)n

< 3(n
2)−1

will work. A little thought shows that any N with N ≤ n3n/2

e
√
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will satisfy this inequality. We could do a bit better but the
main point os to get a lower bound with exponential growth.

(4) Let F be the set of all finite subsets of N. Is the following
Ramsey-type statement true or false?

“For all f : F −→ {red, blue} there is an infinite set H ⊆ N
such that all the finite subsets of H are given the same colour
by f”.

False! Just colour even size subsets red and odd size subsets
blue.

(5) Prove that if R(s − 1, t) and R(s, t − 1) are both even then
R(s, t) ≤ R(s− 1, t) + R(s, t− 1)− 1.

Let X have size R(s−1, t)+R(s, t−1)−1, and let F be any
red-blue colouring of [X]2. We imitate the proof of the induction
step in the finite Ramsey theorem, a bit more carefully since
we have one less element to play with.
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For each x ∈ X we may partition X {x} as Rx ∪ Bx where
Rx = {y ∈ X \ {x} : F ({x, y}) = red} and Bx = {y ∈ X \ {x} :
F ({x, y}) = blue}. There are three cases:

Case 1: there is x with |Rx| ≥ R(s − 1, t). In this case we
may proceed as in the proof of the finite Ramsey theorem.

Case 2: there is x with |Bx| ≥ R(s, t − 1). Again we may
proceed as in the proof of the finite Ramsey theorem.

Case 3: for all x |Rx| = R(s − 1, t) − 1 and |Bx| = R(s, t −
1) − 1. This case seems problematic: we show that it cannot
occur.

To see this just observe that each red pair {x, y} contributes
1 to each of |Rx| and |Ry|; so if A is the number of red pairs then
2A =

∑
x |Rx| = (R(s−1, t)+R(s, t−1)−1)× (R(s−1, t)−1).

This is impossible since the RHS is odd while the LHS is even.
(6) (Tricky!) Prove that R(3, 4) = 9.

R(2, 4) = 4 and R(3, 3) = 6 so by the last problem R(3, 4) ≤
9. We show R(3, 4) > 8 by providing a suitable colouring of 8
points.

We arrange eight points evenly round the circumference of a
circle and colour a pair of points red if and only if the points
are either adjacent to each other or opposite to each other.

Claim 1: there are no red homogeneous sets of size 3.
Proof: If {x, y, z} is such a set then it is not possible that all

three points are opposite to each other, so two must be adjacent,
say x and y. z must either be adjacent to or opposite to x, and
in neither case will it be adjacent or opposite to y.

Claim 2: there are no blue homogeneous sets of size 4.
Proof: such a set can not contain two adjacent points, so it

must consist of four of our eight points evenly spaced. But then
it contains a pair of opposite points, contradiction!


