
DISCRETE MATHEMATICS 21228 — HOMEWORK 3
SOLUTIONS

JC

Due in class Wednesday September 17. You may collaborate but
must write up your solutions by yourself.

Late homework will not be accepted. Homework must either be
typed or written legibly in blue or black ink on alternate lines, illegible
homework will be returned ungraded (so you can rewrite it legibly).

Please write the name of your recitation instructor and the time and
place of your recitation at the top of your homework.

(1) Consider the experiment in which a biased coin with probability
p of coming up heads is tossed N times. Write down a formula
for the expectation value of the number of times the coin comes
up heads. Prove that this expectation value is Np (why might
we have expected this answer?)

As we say in class, the probability of an outcome with a
heads is pa(1− p)N−a. There are

(
N
a

)
many such outcomes, and

so easily the expectation value of the number of heads is

N∑
a=0

a

(
N

a

)
pa(1− p)N−a.

There are various tricks we might use to evaluate this expec-
tation. Here is a nice one. Let q = 1 − p and consider the
expansion of (x + q)N by the Binomial theorem, that is

(x + q)N =
N∑

a=0

(
N

a

)
xaqN−a.

Differentiate both sides with respect to x and get

N(x + q)N−1 =
N∑

a=0

a

(
N

a

)
xa−1qN−a.
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Multiply by x, set x = p, note that p + q = 1 and conclude

Np =
N∑

a=0

a

(
N

a

)
paqN−a

as required.
We might have expected this answer because each time we

toss the coin there is a probability p that it comes up heads, so
that each of the N tosses makes a contribution p to the total
expectation.

Here is another proof which makes this idea precise. For each
a let fa be the function on the probability space of outcomes
(strings of N many H’s and T ’s) which is 1 if toss a yields a
head and 0 otherwise. Clearly if f is the function which gives
the number of heads then f = f1 + . . . fN , and so by an easy
calculation E(f) = E(f1) + . . . E(fN).

Now easily E(fa) is exacty the probability of the event “coin
comes up head on toss a”, and this probability is p. So E(f) =
Np.

I gave yet another proof in class, which involved using the
identity

a

(
N

a

)
=

N !

(a− 1)!(N − a)!
= N

(
N − 1

a

)
to rearrange the sum.

(2) Consider the experiment in which the biased coin with proba-
bility p of coming up heads is tossed repeatedly until it comes
up tails. Find a formula for pn, the probability that the coin is
tossed exactly n times. For a given value of p, what is the least
N such that the probability we toss the coin at most N times
is at least 0.99?

To be tossed exactly n times, we must have n− 1 heads then
a tail, so pn = pn−1(1 − p). The probability that we toss the
coin at most N times is

p1 + . . . pN = (1− p)(1 + . . . pN−1) = 1− pN .

Alternative argument: we do not toss the coin at most N
times if and only if we come up heads on the first N tries, and
this has probability pN .

Now 1−pN ≥ 0.99 if and only if pN ≤ 0.01, so easily the least
N that works is the least integer such that N ≥ ln(0.01)/ ln(p).

(3) Consider the 3D generalisation of the notion of path: a path is
a sequence (x0, y0, z0), (x1, y1, z1), . . . (xn, yn, zn) where at each
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step one of the three coordinates increases by one while the
other two remain constant. If a, b, c are natural numbers show
that the number of paths from (0, 0, 0) to (a, b, c) is

(a + b + c)!

a!b!c!

Clearly the set of paths can be put in a bijective correspon-
dence with the set of strings of length a+b+c from the alphabet
{x, y, z} containing a many x’s, b many y’s and c many z’s.

To count these strings, note that if N = a + b + c then there
are

(
N
a

)
ways of placing the x’s and then

(
N−a

b

)
ways of placing

the y’s, after which the placing of the z’s is determined. This
gives

N !

a!(N − a)!
× (N − a)!

b!(N − a− b)!
=

N !

a!b!c!

possibilities.
(4) If a, b, c are natural numbers with c > a + b, find an expression

for the number of paths from (0, 0, 0) to (a, b, c) such that z >
x + y for every point (x, y, z) on the path except for (0, 0, 0).
(Geometrical picture: we are looking at paths which stay above
the plane z = x + y).

(Sketchy, you should give a bit more detail) Given a path W
from (0, 0, 0) to (a, b, c) such that z > x + y at all but the first
point, we define a path W ∗ from (0, 0) to (a + b, c) as follows:
each point (xi, yi, zi) on W corresponds to a point (xi + yi, zi)
on W ∗. It is easy to see that the path W ∗ stays above the
diagonal.

The key question is now how many values for W correspond
to a given value for W ∗, that is a given path from (0, 0) to
(a + b, c) which stays above the diagonal? Suppose W ∗ is the
path (s0, z0), . . . (sN , zN) where N = a + b + c. At one of the c
steps where zi+1 = zi + 1 we must have xi+1 = xi and yi+1 =
yi + 1, while at one of the a + b steps where zi+1 = zi we must
have either xi+1 = xi + 1 or yi+1 = yi + 1. If we focus on the
latter class of steps, we see that we are tracing out a path from
(0, 0) to (a, b), and that in fact any such path corresponds to a
suitable W .

So we get a total of

c− a− b

c + a + b

(
a + b + c

c

)
×

(
a + b

b

)
.
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(5) We are given n letters L1, . . . Ln and n envelopes E1, . . . En.
How many ways are there of putting the letters in the envelopes
so that exactly one letter goes in each envelope? How many
ways are there such that for every i, letter Li does not go into
envelope Ei?

There are n! ways of putting the letters in the envelopes. Let
dn be the number of such ways in which every letter goes in
the wrong envelope. Permutations of a set X which move every
x ∈ X are called derangements of X so we are counting the
number of derangements of an n-element set.

Solution one: let π be some derangement of {1, . . . n} and
suppose that π(1) = i. If π(i) = 1 then π gives a derangement
of {1, . . . n} \ {1, i}, and there are dn−2 such derangements.

We claim that the set of derangements with π(1) = i and
π(i) 6= 1 is in bijection with the set of derangements of {2, . . . n}.
Given a derangement ρ of {2, . . . n} define ρ∗ as follows: ρ∗(1) =
i, ρ∗(ρ−1(i)) = i, ρ∗(x) = ρ(x) for all other x.

We conclude that dn = (n − 1)(dn−1 + dn−2) for all n > 2.
Clearly d1 = 0 and d2 = 1, so this determines dn.

Note : to get a closed form expression rather than a recur-
rence we notice that if en = dn − ndn−1 then from the re-
currence en = −en−1. Also e2 = 1 so by an easy induction
en = (−1)n. So we get dn = ndn−1 + (−1)n, and then easily
dn = n!− n!/2! + n!/3! + . . . n!/n!.

Cultural remark: it is amusing to note that dn/n! tends to
1/e for n large.

Solution 2: use the “inclusion exclusion” formula as in the
online notes.

(6) (Challenging) Recall that in class we defined the nth Catalan
number to be

Cn =
1

n + 1

(
2n

n

)
,

or equivalently the number of paths from (0, 0) to (n, n) which
do not go below the line y = x.
(a) Show that Cn is the number of sequences (1, a1, . . . an) with

ai ∈ N and ai ≤ i and 1 ≤ a1 ≤ . . . ≤ ai.
Argument one (sketch, you should give a bit more detail):
consider a path from (0, 0) to (n, n) which does not go
below the line y = x. This path must contain n vertical
segments, and the x-coordinate of the nth segment is at
most n − 1 because we are staying above the diagonal. If
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we let ai equal the x-coordinate for segment i plus 1 then
we can set up a bijection between sequences and paths, so
the number of sequences equals the number of paths equals
Cn.

(b) Given 2n distinct points on the circumference of a circle, Cn

is the number of ways of joining them in pairs by drawing
n chords of the circle, no two of which intersect. Here is a
picture for the case n = 2.
Let Dn be the number of ways of drawing the chords and
note D0 = D1 = 1. Label the points with labels from 0 to
2n− 1. It is clear that 0 must be joined to a point with an
odd label 2i+ 1, because there must be an even number of
points on each side as the chords are non-intersecting. It
is also clear that there are Di ways of drawing the chords
which connect the 2i points {1, . . . 2i} on one side of the
chord joining 0 and 2i + 1, and Dn−i−1 wys of drawing the
chords connecting the 2(n− i− 1) points {2i + 2, 2n− 1}
on the other side. So

Dn =
∑
i<n

DiDn−i−1,

and since this is the recurrence satisfied by the Catalan
numbers we have Dn = Cn.


