
References: Ahlfors “Complex analysis”, Conway “Functions of one complex
variable”.

1. Background

I will assume a knowledge of undergraduate algebra and analysis, plus elementary
facts about the arithmetic of complex numbers. Here is a more detailed list (possibly
subject to expansion and revision as the course proceeds).

1.1. Algebra. Key ideas: Groups, rings, fields, rings of polynomials:

Groups: A group is a set G equipped with an associative binary operation, which
has a 2-sided identity element and 2-sided inverses. G is abelian if and only if the
operation is commutative.

Rings: A ring is a set R equipped with binary operations + and × such that (R,+)
is an abelian group, × is associative, and × distributes over +. R is commutative
if and only if × is commutative, and unital if and only if × has an identity.

We write 0 for the +-identity and 1 for the ×-identity.

Fields: A field is a commutative unital ring in which 1 6= 0, and every nonzero
element has a ×-inverse.

Polynomial rings: If k is a field then we make the set k[x] of polynomials in one
indeterminate x into a ring in the obvious way.

If f ∈ k[x], then f(a) = 0 if and only if x− a divides f in k[x].

1.2. Analysis. Key ideas: The real field, absolute value, convergence, compact-
ness.

The reals: R is a field under the usual + and × operations.

Absolute value: The real absolute value function x 7→ |x| has the properties |x+y| ≤
|x|+ |y|, |xy| = |x|.|y|, |x| ≥ 0, |x| = 0 ⇐⇒ x = 0.

A real sequence (xn) converges if and only if it is Cauchy. Every bounded sequence
has a convergent subsequence.

A subset K of R is compact if and only if it is closed and bounded. If f : R → R
is continuous then f [K] is bounded, and contains its sup and its inf (that is to say,
on K the function f is bounded and attains its bounds).

If f is continuous then f is bounded on [a, b], and |
∫ b

a
f(x)dx| ≤ (b−a) maxx∈[a,b] |f(x)|.

1.3. Complex numbers. Key ideas: Complex numbers, the complex field, the
complex plane (AKA Argand diagram), absolute value an argument of a complex
number.

The complex numbers: We write a typical complex number in the form z = a+ ib
where a, b are real. In this case we write a = <(z), b = =(z) (the real and imaginary
parts of z). We always identify the real r with r+ 0i, so that R ⊆ C. The plus and
times operations are given by

(a0 + ib0) + (a1 + ib1) = (a0 + a1) + i(b0 + b1),

(a0 + ib0)× (a1 + ib1) = (a0a1 − b0b1) + i(a0b1 + a1b0).

Note that i2 = −1 and R forms a subfield of C.
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The complex field: C forms a field under the + and times operations. The inverse
of a+bi is a−bi

a2+b2 . The map which takes z = a+bi to z̄ = a−bi is an automorphism

of C, called complex conjugation. z + z̄ = 2<(z), z − z̄ = 2i=(z).

The complex plane: C can be considered as a real vector space of dimension 2, which
is isomorphic to R2 via the map a+ ib 7→ (a, b). Complex addition corresponds to
vector addition.

Absolute value: If z = a+ ib the absolute value |z| = (a2 +b2)1/2. |z|2 = zz̄. Just as
for the reals we have |z +w| ≤ |z|+ |w|, |zw| = |z|.|w|, |z| ≥ 0, |z| = 0 ⇐⇒ z = 0.

The absolute value is also sometimes called the modulus or magnitude.

Argument: A complex number z can be expressed in the form r cos(θ) + ir sin(θ)
where r = |z| (this corresponds to using polar coordinates in the complex plane).
θ is called the argument. For z 6= 0 (that is r > 0) the value of θ is unique up to
adding multiples of 2π, so we can choose a unique θ in [−π, π) or [0, 2π).

If we let cis(θ) = cos(θ) + i sin(θ), then cis(θ1) cis(θ2) = cis(θ1 + θ2).

Notation: z, w are typically complex numbers with z = x+ iy and w = u+ iv for
x, y, u, v real. In complex analysis w typically depends on z, so that we can view
u, v as real valued functions of (x, y).

2. Sequences, series and functions

Note: This discussion runs parallel to that for real sequences/series/functions in
undergraduate real analysis. So it is brief and most of the details are left to you to
fill in. We are using the elementary properties of real and complex numbers from
the preceding section, in particular we use the properties of the complex absolute
value.

2.1. Sequences of complex numbers. Key ideas: Convergence, limit, Cauchy
sequence, completeness.

Convergence for a complex sequence: Let (zn) be a complex sequence. Then zn → z
if and only if for all ε > 0 there is N such that |zn − z| < ε for all n ≥ N .

Exercise: zn → z for at most one z.

Notation: If zn → z we write z = limn→∞ zn.

Cauchy sequence: A Cauchy sequence is a sequence (zn) such that for all ε > 0
there is N such that |zm − zn| < ε for m,n ≥ N . It is very easy to see that a
convergent sequence is Cauchy.

Completeness for C: Just like in R the converse holds, that is to say every Cauchy
sequence is convergent (in the jargon, C is a complete metric space).

Let (zn) be Cauchy with zn = xn + iyn for real xn, yn. Since |zm − zn|2 =
|xm − xn|2 + |ym − yn|2, we have |xm − xn| ≤ |zm − zn| and |ym − yn| ≤ |zm − zn|.
So (xm) and (ym) are Cauchy sequences of reals, and hence (by completeness for
R) converge with limits x and y say. We claim that if z = x + iy then zn → z: to
see this just note that |zn − z|2 = |x− xn|2 + |y − yn|2.

Exercise: A complex sequence (zn) is bounded if and only if the real sequence
(|zn|) is bounded. Prove that every bounded complex sequence has a convergent
subsequence.
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2.2. Series of complex numbers. Key ideas: Infinite series, partial sums, con-
vergence for a series, absolute convergence.

Partial sums: Let (am) be a complex sequence. Just as in real analysis we give a
meaning to the infinite sum

∑∞
m=0 am by considering partial sums sn =

∑∞
m=0 am.

Convergence: The series converges to a if and only if the sequence (sn) is convergent
with limit a, and in this case we write

∑∞
m=0 am = a.

Absolute convergence: The complex series
∑∞

m=0 am is absolutely convergent if and
only the real series

∑∞
m=0 |am| is convergent.

Since for n < n′ we have |
∑

n<i≤n′ ai| ≤
∑

n<i≤n′ |ai|, it follows readily from
completeness that an absolutely convergent sequence is convergent. Sketch of ar-
gument: Partial sums of

∑∞
m=0 |am| convergent implies partial sums of

∑∞
m=0 |am|

Cauchy implies partial sums of
∑∞

m=0 am Cauchy implies partial sums of
∑∞

m=0 am
convergent.

2.3. Complex functions I : Limits and continuity. Key ideas: open set, limit
of a function, continuity.

Open set in C: A subset U ⊆ C is open if and only if for all z ∈ U there is δ > 0
such that B(z, δ) = {w : |w − z| < δ} ⊆ U .

Open sets in C have similar properties to open sets in R: notably ∅ is open, C
is open, a finite intersection of open sets is open, an arbitrary union of open sets is
open.

Limits: Consider a complex-valued function f whose domain is an open set U in
the complex plane.

Let a ∈ U , then f(z) → b as z → a if and only if for every ε > 0 there is δ > 0
such that B(a, δ) ⊆ U and f(z) ∈ B(b, ε) for all z ∈ B(a, δ) \ {a}.

In this case b is unique and we write b = limz→a f(z).

Continuity: With the same assumptions, f is continuous at a if and only if f(a) =
limz→a f(z), and continuous if and only if it is continuous at all a ∈ U .

Exercise: Let w = f(z) and as above let w = u + iv, z = x + iy for real x, y, u, v.
Then we can view u and v as functions u(x, y) and v(x, y) from R2 to R. Prove
that if a = a0 + ia1 then f is continuous at a if and only if both u, v are continuous
at (a0, a1).

Using the last exercise or working directly from the definitions and imitating
proofs from real analysis, we get that sums and products of continuous functions
are continuous.

2.4. Complex functions II: Differentiability. Key ideas: Derivative, Cauchy-
Riemann equations, harmonic functions, holomorphic functions.

Derivative: Let f be a complex valued function defined on an open set U , and let
z ∈ U . Then just as in real analysis we say that f is complex differentiable at z if

and only if the limit limh→0
f(z+h)−f(z)

h exists, and in this case we write f ′(z) for
the limiting value. f ′ is the derivative of f .

Exercise: The function z 7→ z2 is complex differentiable with derivative 2z.

Exercise: If f is complex differentiable at z then f is continuous at z.

Example: The function z 7→ z̄ (complex conjugation) is NOT COMPLEX DIF-
FERENTIABLE.
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To see this we consider the point z = 0 and approach it from two directions: first
along the real axis and then along the imaginary axis. Let h0 be a real variable,

then limh0→0
h̄0−0̄
h0

= 1, but limh0→0
ih0−0̄
ih0

= −1. It follows easily that the complex

limit limh→0
h̄−0̄
h does not exist, so z 7→ z̄ is not complex differentiable at z = 0.

Cauchy-Riemann: As usual let w = f(z) with w = u + iv, z = x + iy, and view
u, v as functions of x, y. Suppose that f is complex differentiable at an arbitrary
point z = x + iy ∈ dom(f), then working as in the last example we obtain two
expressions which must both be equal to the derivative of f at z, namely

lim
h0→0

u(x+ h0, y)− u(x, y) + i(v(x+ h0, y)− v(x, y))

h0

and

lim
h0→0

u(x, y + h0)− u(x, y) + i(v(x, y + h0)− v(x, y))

ih0
.

The first expression is of course ux + ivx and the second one is (uy + ivy)/i =
vy − iuy, so equating real and imaginary parts ux = vy and vx = −uy.

So if f is complex differentiable throughout its domain U , then the real and imag-
inary parts of f satisfy these equations (the Cauchy-Riemann equations) throughout
U .

Examples continued: If f is conjugation then u = x, v = −y so that the first
C-R equation is satisfied nowhere (and conjugation is not complex differentiable
anywhere). If f : z 7→ z2 then u = x2 − y2, v = 2xy and the C-R equations are
satisfied everywhere as expected.

Harmonic functions: Assuming that the relevant derivatives exist and mixed par-
tials are equal (this is actually true, proof later) we get from the C-R equations
that uxx = vyx = vxy = −uyy, that is to say uxx +uyy = 0. Similarly vxx +vyy = 0.
Functions with this property are called harmonic and the PDE they satisfy is the
Laplace equation.

The property of complex differentiability is much stronger and more global in its
effects than is the notion of differentiability in real analysis. To mark this difference,
we will henceforth use a different term:

Holomorphic function: A complex function with domain an open set U is holomor-
phic if and only if f ′(z) exists for every point z ∈ U .

Digression: If you have been exposed to complex analysis before you may also have
heard the term “analytic” used with the same meaning. I won’t use this term (yet)
for reasons to be explained in a few lectures time.

Here are some examples of the differences between real and complex differentia-
bility (all proved later in the course):

• If f is holomorphic then f ′ is holomorphic.
• If f : C→ C is holomorphic and bounded, then f is constant.
• Suppose that f is holomorphic and {z : |z − z0| < R} ⊆ dom(f). Then for

any r with 0 < r < R, the value of f at z0 is the average (in an appropriate
sense) of the value of f on the circle {z : |z − z0| = r}.
• If f : C→ C and g : C→ C are holomorphic and agree on some non-empty

open set (however tiny) then f = g.
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This may leave you with the false impression that there can’t be too many
holomorphic functions. To dispel this impression, here are more facts proved later
in the course:

• (A bit vaguely stated for the moment) If f is defined by a convergent power
series then f is holomorphic.
• If U is a non-empty simply connected open set with U 6= C and z0 ∈ U , then

there exists a unique holomorphic f with domain U such that f(z0) = 0,
f ′(z0) > 0, and f defines a bijection between U and the open unit disk
D = {z : |z| < 1}.

Note: “Simply connected” means roughly there are no holes in U .

2.5. Sequences and series of functions. So far our focus was on functions from
C to C. It’s more natural to discuss convergence for sequences of functions in the
context of metric spaces.

Metric spaces: A metric space is a set X equipped with a function d from X2 to R
such that for all x, y, z ∈ X we have d(x, y) = d(y, x) ≥ 0, d(x, y) = 0 ⇐⇒ x = y,
and d(x, z) ≤ d(x, y) + d(y, z).

Standard metrics on C and R: both R and C are metric spaces with metric given
by d(x, y) = |x− y|.

When we define concepts like convergence, continuity and so for metric spaces
it will be clear that we are making generalisations of the definitions we gave above.

Convergence for a sequence in a metric space: Let (xn) be a sequence from a metric
space X. Then xn → x if and only if for all ε > 0 there is N such that d(xn, x) < ε
for all n ≥ N . xn → x for at most one x, and in this case we write x = limn→∞ xn.

Cauchy sequence in a metric space: A Cauchy sequence is a sequence (xn) such
that for all ε > 0 there is N such that d(xm, xn) < ε for m,n ≥ N . Convergent
sequences are Cauchy.

Complete metric spaces: A metric space is complete if and only if every Cauchy
sequence is convergent. R and C are complete, but for example Q (with the metric
it inherits from R) is not.

Open set in a metric space X: A subset U ⊆ X is open if and only if for all z ∈ U
there is δ > 0 such that B(z, δ) = {w : d(w, z) < δ} ⊆ U . ∅ is open, X is open, a
finite intersection of open sets is open, an arbitrary union of open sets is open.

Continuous functions between metric spaces: Function f from space X to space
Y is continuous at x if and only if for every ε > 0 there is δ > 0 such that
f [B(x, δ)] ⊆ B(f(x), ε). It is continuous if and only if it is continuous at every x,
or equivalently the preimage under f of every open subset of Y is an open subset
of X.

Pointwise convergence for sequences of functions: Let X,Y be metric spaces, let
E ⊆ X and let (fn) be a sequence of functions from E to Y . (fn) is pointwise
convergent if and only if (fn(x)) is convergent in Y for every x ∈ E. This gives a
function f : E → Y , the (pointwise) limit of (fn).

Unwrapping the definition, (fn) converges to f pointwise if and only if for all
ε > 0 for all x ∈ E there is N (depending on x) such that for all n ≥ N we have
d(fn(x), f(x)) < ε.

Uniform convergence for sequences of functions: As the name suggests, the defini-
tion of uniform convergence is obtained by removing the dependence of N on x.
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(fn) converges uniformly to f if and only if all ε > 0 there is N such that for all
x ∈ E and all n ≥ N we have d(fn(x), f(x)) < ε. (fn) is uniformly convergent if it
converges uniformly to some f .

The main point is that a uniformly convergent sequence of continuous functions is
continuous.


