COMPLEX ANALYSIS HW I

This homework is due by class time on Friday 24. Your solutions must be typeset (preferably in LATEX) and submitted by email as a PDF file: your name and the homework number should appear at the top of the file and in the subject line of your message, and the filename should be "[YourAndrewID]-[number of the HW].pdf".

- (1) Prove that there is no continuous function $f : \mathbb{C} \to \mathbb{C}$ such that $f(z)^2 = z$ for all z. Hint: start with the observation that $f(\operatorname{cis}(\theta))$ is a continuous function of θ .
- (2) The upper half plane is the set $\mathbb{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$. $SL_2(\mathbb{R})$ is the set of 2×2 real matrices with determinant 1.

and $z \in \mathbb{H}$, then

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

$$A \cdot z = \frac{az+b}{cz+d}.$$

- (a) Prove that $A \cdot z \in \mathbb{H}$.
- (b) Prove that $A \cdot (B \cdot z) = (AB) \cdot z$.
- (c) Identify the set of A such that $A \cdot z = z$ for all z.
- (3) Let $f: U \to \mathbb{C}$ be holomorphic, where U is closed under complex conjugation, and define a function $g: U \to \mathbb{C}$ by $g(z) = \overline{f(\overline{z})}$. Prove that g is holomorphic and find the derivative of g.
- (4) Let a ∈ C with |a| < 1, and let U be the open unit disk {z ∈ C : |z| < 1}
 (a) Prove that the map φ given by φ : z ↦ z-a/(1-az) is holomorphic on U.
 - (b) Prove that ϕ is a bijection from U to U, and that ϕ^{-1} is also holomorphic on U.
- (5) Let U be the open unit disk, and let $f: U \to \mathbb{C}$ be a holomorphic function such that f takes only real values. Prove that f is constant. Hint: Cauchy-Riemann.