
CA LECTURE 9

SCRIBE: PETER GLENN

Recall that every ideal of S−1R is an extension of some ideal of R. Now we
analyse which ideals of R are contractions.

Let I be an ideal of R. Then Ie = {a/s : a ∈ I, s ∈ R}. So if a ∈ Iec then
a/1 = b/s for some b ∈ I and s ∈ S, and (by the definition of the ER defining
S−1R) there is t ∈ S such that t(b − as) = 0. It follows that a(st) = bt ∈ I, so
Iec ⊆ {a : ∃u ∈ S au ∈ I}. On the other hand if au ∈ I for some u ∈ S then
a/1 = (au)/u ∈ Ie, so that a ∈ Iec. In conclusion

Iec = {a ∃u ∈ S au ∈ I}.
Now we ask which ideals extend to S−1R. Easily

Ie = S−1R ⇐⇒ 1 ∈ Ie ⇐⇒ 1 ∈ Iec ⇐⇒ I ∩ S 6= 0,

so the ideals with non-trivial extensions are the ones avoiding S.
By the general theory of extension and contraction, I is a contraction of an ideal

in S−1R iff Iec ⊆ I. By the calculation above this amounts to saying

∀a ∈ R ∀u ∈ S au ∈ I =⇒ a ∈ I,

equivalently going to R/I

∀a ∈ R ∀u ∈ S (a + I)(u + I) = 0 =⇒ a + I = 0,

So if S̄ = {u + I : s ∈ S} then we see that I = Iec iff S̄ contains no zero-divisors in
R/I.

Recall that we have a dichotomy for S−1R when R is an ID: EITHER 0 ∈ S
and S−1R is the zero ring, OR S−1R is isomorphic to the subring of the field of
fractions of R consisting of quotients a/s where a ∈ R, s ∈ S. In the latter case
S−1R is an ID.

Theorem 1. Let S ⊆ R be a MC set in the ring R. Then there is a 1-1 inclusion
preserving correspondence between prime ideals of S−1R and prime ideals of R
which are disjoint from S.

Proof. Let Q be a prime ideal of S−1R. All ideals of S−1R are extensions so
Q = Qce. A contraction of a prime ideal is prime so Qc is prime, and Q 6= S−1R
so that Qc ∩ S = ∅. So every prime ideal of S−1R is the extension of a prime ideal
disjoint from S.

It remains to show that for every prime ideal P of R which is disjoint from S, P
is a contraction (that is P = P ec) and P e = S−1P is prime in S−1R. We use HW6
Q2 which tells us that if S̄ = {u + P : u ∈ S} then

S̄−1R/P ' S−1R/S−1P.

The LHS is a ring of fractions of the ID R/P , and 0 /∈ S̄ since P is disjoint from S.
Hence the LHS is an ID, so that S−1P is prime in S−1R. Also since R/P is an ID it
has no nonzero zero-divisors, so S̄ contains no zero-divisors and thus P = P ec. �
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Most important special case: P is prime in R and S = R \ P . We write RP

for S−1R in this case. We get a 1-1 inclusion-preserving correspondnece between
prime ideals of RP and prime ideals of R contained in P . In particular P e is the
unique maximal ideal of RP , which is therefore a local ring.

A sample application:

Theorem 2. Let φ : R → S be a HM. Then any prime ideal P in R which is a
contraction of some ideal in S is a contraction of a prime ideal.

Proof. As P is a contraction, we have1 P = P ec.
Let X = R \P and Y = φ[X], so that Y is a MC subset of S. We claim that P e

is disjoint from Y ; to see this observe that if b ∈ Y then b = φ(a) for some a ∈ X,
and if b ∈ P e then a ∈ P ec = P .

Let J be the extension of P e in Y −1S, let K ⊇ J be a prime ideal of Y −1S and
let Q be the contraction of K in S. Then Q is prime with P e ⊆ Q ⊆ S \ Y , hence
P ⊆ Qc ⊆ P as required. �

Remark: our old way of building prime ideals boils down to an argument that
maximal ideals of S−1R correspond to prime ideals of R. We could have used that
idea here.

Modules of fractions: let M be an R-module and S MC in R. We define an
S−1R-module S−1M as follows: we have an ER on M × S in which (m1, s1) is
equivalent to (m2, s2) iff there is u ∈ S such that u(s1m2− s2m1) = 0. We let m/s
be the class of (m, s) and S−1M the set of all classes. Then we define addition by
the formula m1/s1 + m2/s2 = (m1s2 + m2s1)/(s1s2) and scalar multiplication by
the formula a/sm/t = am/st. It is routine to check that this works.

1P e is not necessarily the prime ideal we want, but note that if P = Qc then P e = Qce ⊆ Q


