CA LECTURE 8

SCRIBE: MATTHEW WRIGHT

New topic: Localisation (we see the geometrical reason behind this word later
in the course).

Recall the “field of fractions” construction for an ID R. We let X be the set of
pairs (a,b) where a,b € R with b # 0 and introduce a binary relation E in which
(a,b)E(c,d) iff ad = be.

This is an equivalence relation: the only tricky bit is transitivity which goes as
follows. Suppose that (al,bl)E(ag,bg)E(a:;,bg), so that albg = a2b1 and a2b3 =
asby. Then easily a1bobs = asb1bs = agbiba, so since by # 0 and R is an ID we
conclude that a1bs = asb;.

We then define a/b to be the E-class of (a,b) and attempt to define

a/b+c/d = (ad+bc)/bd,a/bx ¢/d = ac/bd,0 =0/1,1 =1/1.

It is routine to check that these operations are well-defined and make the set F' of
E-classes into a field. Also the map ¢ : a — a/1 is an injective HM from R to F.

The intuition is that F' is the “least field” containing a copy of R. Explicitly it is
easy to see that if ¢ : R — F™* is an injective HM from R to a field F™*, then there
is a unique HM « : F' — F* such that awo ¢ = 9. This « is given by the equation
a:a/brs(a)p(b)~t. We note that « is injective since it is a HM between fields.

This “universal property” determines the field F' and the map ¢ : R — F up to
IM. To see this we introduce a category whose objects are injective HMs from R
to fields. If ¢1 : R — E; and ¢o : R — E5 are two objects then a morphism from
¢1 to ¢2 is a map a : E1 — F5 such that a o ¢p; = ¢o. The property of the field of
fractions construction which we stated in the last paragraph just says that the map
r+— r/1 from R to F is an initial object. So by general nonsense if ¢; : R — Fj
and ¢, : R — F5 are two objects with the property described in the last paragraph
then there is a unique IM « : F} >~ F5 such that o ¢1 = ¢s.

Now we generalise the FOF construction to a case where R is an arbitary ring
and the set of ’"denominators” is any multiplicatively closed S C R. We are looking
for an initial object in the category whose objects are ring HMs ¢ : R — T such
that ¥[S] is contained in the units of T. As usual a morphism from ; to ¥g is just
a HM « such that oo = 9.

The set X is now the set of pairs (a, s) where a € R and s € S. The equivalence
relation used in the FOF construction won’t work because now S may contain zero-
divisors, so we define that (a, s)E(b,t) iff there is u € S such that u(at — bs) = 0.

The following claims are easily checked:

(1) E is an equivalence relation: we will denote the class of (a,s) by a/s and
the set of classes by S™!'R.
(2) If we define +, x, 0 and 1 exactly as in the FOF case we make S~ R into
a ring.
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(3) The map ¢ : r — r/1 is a (not necessarily injective) ring HM. For each
s € S we have 1/s x s/1 =1 so that ¢[S] consists of units.
(4) For any ring T and any HM ¢ : R — T such that 1[S] consists of units,
there is a unique o : S™'R — T such that a o ¢ = 1.
Sketch of proof: a/s = ¢(a)¢(5)_1, so if « exists it is given by a : a/s —
(a)(s)~t. Check this works, IE it is well-defined and is a HM.
Special case: if R is an ID and 0 ¢ S, we can identify S~!R with the subring of
the FOF counsisting of a/s with a € R and s € S.
Dry as dust digression on extension and contraction of ideals. Let ¢ : R — S be
a ring HM and let J be an ideal of S, then J¢ = ¢~![J] is an ideal of R. As we
saw in HW the map a + J¢ — ¢(a) + J is an injective HM from R/J¢ to S/J. Let
I be an ideal of R then I¢ is the ideal in S generated by ¢[I], a typical element is
Sor sig(a;) for s; € S and a; € I. Again there is a map a + I — ¢(a) + I¢.
The following are trivial:
(1) I g ICC7 JCC g J’ ICCC — IE’ JC6C — JC.
(2) I is a contraction of something iff I = I°¢ iff 1°® C I and J is an extension
of something iff J = J°° iff J C J°°.
Claim: every ideal J is ST'R is an extension. To see this let [ = J¢ = {a :
a/1l € J}, then if a/s € J we have a/1 = a/s x s/1 € J, so that a € I and
a/s=1/s xa/l € I¢ = Jee.



