CA LECTURE 7

SCRIBE: GEORGE SCHAEFFER

Recall that k is an algebraically closed field (ACF) iff it satisfies any of the
equivalent conditions:
(1) Every f € k[z] of nonzero degree has a root.
(2) Every nonzero f € k[x] is a product of linear factors.
(3) The irreducibles in k[z] are precisely the elements of degree one.

The so-called Fundamental Theorem of Algebra: C is an ACF.
Before proving the N-Satz we need a little more field theory.

Fact 1. Let k <1 where k and | are fields and k is an ACF. If a € | is algebraic
over k then a € k.

Proof. Let f € k[x] be nonzero with f(a) = 0. f is a product of linear factors so
some nonzero linear polynomial in k[z] has a as a zero hence a € k. O

Recall that k(xq,...x:) is the field of fractions of [z, ... zy.

Definition 1. Let k and [ be fields with k <. Then aj ...a; €l are algebraically
independent over k iff for all F € k[xy,...x], F(@) =0 = F =0.

The next fcat is routine.

Fact 2. Let k <1 be fields with k <[ and let a1 ...as €1 be alg ind over k. Ifb €l
is transc over k(aq,...a;) then ay,...a,b is alg indept over k.

Fact 3. Let k andl be fields with k <1 and let ay...a; €1 be alg ind over k. Then
k(ai,...at) = k(z1,...x¢) via an IM which fizes k and maps a; to x;.

Proof. Consider the map F' — F(@) from k[zy...2] to [. It is a ring HM which
has kernel {0} since the a’s are alg ind over k, so it’s an injective HM from the
ID k[z1,...x] to . By general nonsense about fields of fractions this HM extends
uniquely to an injective HM F/G — F(a)/G(a) from k(z1,...x:) to l. Clearly the
range of this injective HM is exactly k(). O

IMPORTANT REMARK: By HW5 Q2 if ¢t > 1 then in the situation of the last
result k(ay,...a) is not ring-finite over k.

Let k be any field and let @ € k™. Let Mz be the ideal of f € k[z1,...x,] such
that f(@) = 0. We claim that Mz is maximal and equals (z1 — a1,... 2, — ap)-
This is easy: Mgz is the kernel of the surjective map f — f(@) to the field k so Mz
is maximal, and the other claim follows by successive division of f € Mz by each
x; — a; in turn.

We prove the N-Satz in the following form:

Theorem 1. (Hilbert Nullstellensatz) if k is an ACF and M is a mazimal ideal of
klxy...xy,] then M = Mg for some @.
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Proof. Let | = k[xy...x,]/M, 1l is a field as M is maximal. kN M = {0} so the
map a € k — a+ M is injective and sets up an IM between k and k* = {a + M :
a € k} <. In particular k* is an ACF.

Let A; = x; + M. Tt will suffice to prove that each A; is alg over k*. For
then each A; € k* so each x; + M = a; + M for some a; € k, but then Mz =
(r1 —a1,...2; —a;) € M, and equality holds as Mz is maximal.

Clearly | = k*[A1,... A,] = k*(A1, ... Ay,), in particular [ is ring finite over k*.
Also it is trivial to see that k* is a Noetherian ring.

Suppose for a contradiction that at least one A; is transc over k*. Let N be the
maximal length of an alg indept subsequence of the A; so that 1 < N <n. WLOG
A; ... Ay are alg indept, and so by the maximal choice of N each A; for j > N is
algebraic over k*(A, ... Anx) (otherwise we we would get that A, ... AyA; was an
alg indepts sequence of length N + 1).

Let F; = k*(A1,... Aj). For j > N A; is alg over Fy, so A; is alg over F;_j,
so F} is module finite over F;_;. By a remark from last time F,, = [ is module
finite over F. But as we remarked above Fly is not ring-finite over k* because
it is generated as a field by an alg indept set of elements, so we contradicted the
techincal lemma from last time with A = k*, B=Fy, C = F,, =1.

O

Note that (22 + 1) is maximal in R[z] so the ACF hypothesis is needed.
Now for some (comparatively) easy corollaries.

Fact 4. Let k be an ACF and let fi,... fs € k[z1,...zpn] have no common zero in
k™. Then (f1,...fs) = (1) in k[Z].

Proof. Otherwise extend (f1,...fs) to a maximal ideal Mz and note that a is a
common zero. O

Fact 5. Let k be an ACF and let J be an ideal in k[zy ...x,]. Then I(V(J)) =/J.

Proof. Obviously v/.J C I(V(J)) so suppose that g € I(V(J)). Let fi ... f, generate
J and consider the set fi,...fs,1 — x,119 as a set in k[z1,...2,41]. It has no
common zero in k"t because ¢ vanishes whenever all the f; vanish, hence we can
find H; € k[xy,...xny1] such that Hif1 + ... Hyfp + Hpp1 (1 — 2py19) = 1

Now substitute x,+1 = 1/¢g and multiply by a suitable power of g to see that for
some k we have g® =" h; f; for some h; € k[z; ...x,] and hence g* € J. O



