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Recall that k is an algebraically closed field (ACF) iff it satisfies any of the
equivalent conditions:

(1) Every f ∈ k[x] of nonzero degree has a root.
(2) Every nonzero f ∈ k[x] is a product of linear factors.
(3) The irreducibles in k[x] are precisely the elements of degree one.

The so-called Fundamental Theorem of Algebra: C is an ACF.
Before proving the N-Satz we need a little more field theory.

Fact 1. Let k ≤ l where k and l are fields and k is an ACF. If a ∈ l is algebraic
over k then a ∈ k.

Proof. Let f ∈ k[x] be nonzero with f(a) = 0. f is a product of linear factors so
some nonzero linear polynomial in k[x] has a as a zero hence a ∈ k. �

Recall that k(x1, . . . xt) is the field of fractions of k[x1, . . . xt].

Definition 1. Let k and l be fields with k ≤ l. Then a1 . . . at ∈ l are algebraically
independent over k iff for all F ∈ k[x1, . . . xt], F (~a) = 0 =⇒ F = 0.

The next fcat is routine.

Fact 2. Let k ≤ l be fields with k ≤ l and let a1 . . . at ∈ l be alg ind over k. If b ∈ l
is transc over k(a1, . . . at) then a1, . . . at, b is alg indept over k.

Fact 3. Let k and l be fields with k ≤ l and let a1 . . . at ∈ l be alg ind over k. Then
k(a1, . . . at) ' k(x1, . . . xt) via an IM which fixes k and maps ai to xi.

Proof. Consider the map F 7→ F (~a) from k[x1 . . . xt] to l. It is a ring HM which
has kernel {0} since the a’s are alg ind over k, so it’s an injective HM from the
ID k[x1, . . . xt] to l. By general nonsense about fields of fractions this HM extends
uniquely to an injective HM F/G 7→ F (~a)/G(~a) from k(x1, . . . xt) to l. Clearly the
range of this injective HM is exactly k(~a). �

IMPORTANT REMARK: By HW5 Q2 if t ≥ 1 then in the situation of the last
result k(a1, . . . at) is not ring-finite over k.

Let k be any field and let ~a ∈ kn. Let M~a be the ideal of f ∈ k[x1, . . . xn] such
that f(~a) = 0. We claim that M~a is maximal and equals (x1 − a1, . . . xn − an).
This is easy: M~a is the kernel of the surjective map f 7→ f(~a) to the field k so M~a

is maximal, and the other claim follows by successive division of f ∈ M~a by each
xi − ai in turn.

We prove the N-Satz in the following form:

Theorem 1. (Hilbert Nullstellensatz) if k is an ACF and M is a maximal ideal of
k[x1 . . . xn] then M = M~a for some ~a.
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Proof. Let l = k[x1 . . . xn]/M , l is a field as M is maximal. k ∩M = {0} so the
map a ∈ k 7→ a + M is injective and sets up an IM between k and k∗ = {a + M :
a ∈ k} ≤ l. In particular k∗ is an ACF.

Let Ai = xi + M . It will suffice to prove that each Ai is alg over k∗. For
then each Ai ∈ k∗ so each xi + M = ai + M for some ai ∈ k, but then M~a =
(x1 − a1, . . . xi − ai) ⊆ M , and equality holds as M~a is maximal.

Clearly l = k∗[A1, . . . An] = k∗(A1, . . . An), in particular l is ring finite over k∗.
Also it is trivial to see that k∗ is a Noetherian ring.

Suppose for a contradiction that at least one Ai is transc over k∗. Let N be the
maximal length of an alg indept subsequence of the Ai so that 1 ≤ N ≤ n. WLOG
A1 . . . AN are alg indept, and so by the maximal choice of N each Aj for j > N is
algebraic over k∗(A1, . . . AN ) (otherwise we we would get that A1 . . . ANAj was an
alg indepts sequence of length N + 1).

Let Fj = k∗(A1, . . . Aj). For j > N Aj is alg over FN , so Aj is alg over Fj−1,
so Fj is module finite over Fj−1. By a remark from last time Fn = l is module
finite over FN . But as we remarked above FN is not ring-finite over k∗ because
it is generated as a field by an alg indept set of elements, so we contradicted the
techincal lemma from last time with A = k∗, B = FN , C = Fn = l.

�

Note that (x2 + 1) is maximal in R[x] so the ACF hypothesis is needed.
Now for some (comparatively) easy corollaries.

Fact 4. Let k be an ACF and let f1, . . . fs ∈ k[x1, . . . xn] have no common zero in
kn. Then (f1, . . . fs) = (1) in k[~x].

Proof. Otherwise extend (f1, . . . fs) to a maximal ideal M~a and note that ~a is a
common zero. �

Fact 5. Let k be an ACF and let J be an ideal in k[x1 . . . xn]. Then I(V (J)) =
√

J .

Proof. Obviously
√

J ⊆ I(V (J)) so suppose that g ∈ I(V (J)). Let f1 . . . fs generate
J and consider the set f1, . . . fs, 1 − xn+1g as a set in k[x1, . . . xn+1]. It has no
common zero in kn+1 because g vanishes whenever all the fi vanish, hence we can
find Hi ∈ k[x1, . . . xn+1] such that H1f1 + . . .Hnfn + Hn+1(1− xn+1g) = 1.

Now substitute xn+1 = 1/g and multiply by a suitable power of g to see that for
some k we have gk =

∑
i hifi for some hi ∈ k[x1 . . . xn] and hence gk ∈ J . �


