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Some easy facts:
Let R ≤ S ≤ T be rings:
(1) If S is module-finite / R then S is ring-finite/ R.
(2) If T is ring-finite/S and S is ring-finite/R then T is ring-finite/R (take the

union of the generating sets)
(3) If T is module-finite/S and S is module-finite/R then T is module-finite/R

(take the pointwise product of the generating sets)
Hilbert’s Nullstellensatz: let k be an algberaically closed field and let R =

k[x1, . . . xn]. Here are three versions of the N-Satz:
(1) The maximal ideal of R are precisely the ideals (x1 − a1, . . . xn − an) for

some point ~a of kn. Note that this ideal is precisely {f ∈ R : f(~a) = 0}.
(2) If J is an ideal of R, then I(V (J)) =

√
J .

(3) Let f1, . . . fk be in R. Then the f’s have no common zero iff for some
g1, . . . gk ∈ R we have

∑
i gifi = 1.

Prove the N-Satz using following technical lemma:

Lemma 1. Let A ≤ B ≤ C where A is N’ian, and C is both ring-finite/A and
module-finite/B. Then B is ring-finite/A.

Point: we need some extra conditions to make sure a subextension of a ring-finite
extension is ring-finite.

Proof. We will find Ā so that A ≤ Ā ≤ B ≤ C, with Ā ring-finite/A and C module-
finite/Ā. This is sufficient: for by the B-Satz we know that Ā is a N’ian ring, and so
since C is fg as a Ā-module it is N’ian as a Ā-module, hence B is module-finite/Ā.
So B is ring-finite/Ā which is ring-finite/A, hence B is ring-finite/A.

Let C = (c1, . . . cm)B = A[d1, . . . dn]. Let b1, . . . bl enumerate elements of B such
that every di and every product cjck is a B-linear combination of the cs’s with
coefficients among the bt’s. Now let Ā = A[b1, . . . bl]. Clearly Ā is ring-finite/A and
to finish we claim that C = (c1, . . . cm)Ā.

Let c be a typical element of C. c can be written as a polynomial in the di with
coefficients from A, so c is a polynomial in the cj with coefficients from Ā. Now by
an easy induction every monomial in the cj can be written as a linear combination
of the cj with coefficients from Ā. �

Before proving the N-Satz we need to see how the finiteness conditions work for
field extensions. Recall that if K ≤ L are fields then

• Given a1, . . . at ∈ L the least subfield of L containing K ∪ {a1 . . . at} is
written K(a1, . . . at) and consists of all quotients

f(a1, . . . at)
g(a1, . . . at)
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where f, g ∈ K[x1, . . . xt] and g(a1, . . . at) 6= 0.
• a ∈ L is algebraic over K iff there is f 6= 0 in K[x] such that f(a) = 0.

Otherwise a is transcendental over K.

Fact 1. If a is alg/K then K(a) = K[a] and K(a) is a module-finite extension of
K (which is just a fancy way of saying it is finite-dimensional when viewed as a
VS over K).

Proof. Let a be algberaic over K and consider the map φ : f 7→ f(a) from K[x] to L.
Now as usual im(φ) ' K[x]/ker(φ). im(φ) is a subring of a field so im(φ) is an ID,
thus ker(φ) is prime. Since a is algebraic ker(φ) 6= 0 so by general nonsense about
PIDs ker(φ) is maximal and can be writen as (Fa) for a unique monic polynomial
Fa (the “minimal polynomial” of a / K). So im(φ) is a field.

It is easy to see that im(φ) = K[a] and since K[a] is a field we have K[a] = K(a).
To finish if deg(Fa) = n then every g ∈ K[x] can be written g = qF + r where
deg(r) < n, so that g(a) = r(a) =

∑
i<n cia

i for some ci ∈ K. It follows that
K(a) = K[a] = (1, a, . . . an−1)K so it is module-finite/ K. �

Cultural note: in fact {1, a, . . . an−1} is linear;y independent so forms a vector
space basis for K(a) over K.


