CA LECTURE 4

SCRIBE: JONATHAN GROSS

Let R be a ring.
Definition 1. The nilradical of R is V0.
Claim 1. V0= {P: P prime }

Proof. We already saw that /0 C (\{P : P prime}. Suppose a € R is not nilpotent,
and let S = {1,a,a?,...}. Note that 0 ¢ S and S is multiplicatively closed, so any
maximal element in {I : I NS =0, T ideal} is a prime ideal not containing a. O

If a is a unit, then (a) = R so a is not in any maximal ideal. If @ is a nonunit,
then (a) # R, so (a) can be extended to a maximal ideal of R.
From this, we can conclude that [ J{M : M maximal ideal} is the set of nonunits.

Definition 2. We say R is local iff R has exactly one maximal ideal.
Claim 2. R is local iff the set of nonunits in R forms an ideal.

Definition 3. The Jacobson radical of R (denoted J) is the intersection of all
mazimal ideals.

Claim 3. Let M be a mazimal ideal, and let r € R. Then, r ¢ M iff there is s € R
such that rs —1 € M.

Proof. Note that R/M is a field as M is maximal, sor € M iff r+ M # 0in R/M
iff r + M unit. So this is true iff there is s € R such that 1+ M = (r+M)(s+ M) =
rs+M,orrs—1¢€ M. O

Now, r ¢ J iff there is M maximal such that r ¢ M. From the previous lemma,
r & M iff there is s € R such that rs — 1 € M. Taking the contrapositive, we see
that r € J iff for all M maximal and all s € R, rs — 1 ¢ M. This is equivalent to
saying that for all s € R rs — 1 is a unit. For cosmetic reasons we we rewrite the
conclusion as r € J iff 1 4+ rs is a unit for all s € R.

Definition 4. We say that M is an R-module iff
(1) (M,+) is an abelian group
(2) There is a map R x M — M that maps (r,m) — rm such that
(a) r(my +ma) = rmy +rmo
(b) (rs)m =r(sm)
(¢) (r +ra)m =rim+rom
(d) 1m =m,0m =0

Example: Let ¢ : R — S be a ring HM. Define scalar multiplication R x S — §
by (r,s) — ¢(r)s. NOTE: As in this course we are assuming ¢(1lgr) = lg, this
makes S into an R-module.

Definition 5. An R-algebra is a ring S together with a ring HM R — S.
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Note: If R is a ring, then R is an R-module.

Definition 6. Let M be an R-module. Then, N C M is a submodule of M (we
write N < M) iff

(1) (N, +) < (M, +)

(2) Vr e R,¥Yne€ N,rn € N.

Note: The R-submodules of R are the ideals.
If N < M, then M/N has a module structure by r(m + N) = rm + N. This is
well-defined since m; + N = mg + N iff my —mg € N, so r(my —ms) € N.

Definition 7. If M, N are R-modules, then ¢ : M — N is a module HM iff

(1) ¢(my1 +ma) = ¢(m1) + $(m2)
(2) ¢(rm) =rp(m).

First IM theorem: im(¢) = M/ ker(¢).

Claim 4. Let M be an R-module, X C M. The least submodule of M con-
taining X is
(X)R =def { Z T LT € R,.’Ei S X}
finite

Definition 8. We say M is finitely generated(fg) iff there is X C M finite such

Fact: There is an integral domain R and a fg R-module M such that not all
submodules of M are fg

Example: Let R = Z[z1,2,...] = U;enZ[1,...,25). Let M = R, and let
N = (x1,z2,...)r. Note that M = (1), so M is f.g. However, N is not f.g.
Suppose that N = (f1,..., fx)r. Choose m so large that all variables appearing in
the f;s are z; for some j < m. As z,,, € N, we have z,, = >_ g; f; for some g¢; € R.
Set x; = 0 for j < m and x,,, = 1 to get a contradiction, as all polynomials in /N
have no constant term.



