
CA LECTURE 4

SCRIBE: JONATHAN GROSS

Let R be a ring.

Definition 1. The nilradical of R is
√

0.

Claim 1.
√

0 =
⋂
{P : P prime }

Proof. We already saw that
√

0 ⊆
⋂
{P : P prime}. Suppose a ∈ R is not nilpotent,

and let S = {1, a, a2, . . .}. Note that 0 6∈ S and S is multiplicatively closed, so any
maximal element in {I : I ∩ S = ∅, I ideal} is a prime ideal not containing a. �

If a is a unit, then (a) = R so a is not in any maximal ideal. If a is a nonunit,
then (a) 6= R, so (a) can be extended to a maximal ideal of R.

From this, we can conclude that
⋃
{M : M maximal ideal} is the set of nonunits.

Definition 2. We say R is local iff R has exactly one maximal ideal.

Claim 2. R is local iff the set of nonunits in R forms an ideal.

Definition 3. The Jacobson radical of R (denoted J) is the intersection of all
maximal ideals.

Claim 3. Let M be a maximal ideal, and let r ∈ R. Then, r 6∈ M iff there is s ∈ R
such that rs− 1 ∈ M .

Proof. Note that R/M is a field as M is maximal, so r 6∈ M iff r + M 6= 0 in R/M
iff r+M unit. So this is true iff there is s ∈ R such that 1+M = (r+M)(s+M) =
rs + M , or rs− 1 ∈ M . �

Now, r 6∈ J iff there is M maximal such that r 6∈ M . From the previous lemma,
r 6∈ M iff there is s ∈ R such that rs − 1 ∈ M . Taking the contrapositive, we see
that r ∈ J iff for all M maximal and all s ∈ R, rs − 1 6∈ M . This is equivalent to
saying that for all s ∈ R rs − 1 is a unit. For cosmetic reasons we we rewrite the
conclusion as r ∈ J iff 1 + rs is a unit for all s ∈ R.

Definition 4. We say that M is an R-module iff
(1) (M,+) is an abelian group
(2) There is a map R×M → M that maps (r, m) 7→ rm such that

(a) r(m1 + m2) = rm1 + rm2

(b) (rs)m = r(sm)
(c) (r1 + r2)m = r1m + r2m
(d) 1m = m, 0m = 0

Example: Let φ : R → S be a ring HM. Define scalar multiplication R× S → S
by (r, s) 7→ φ(r)s. NOTE: As in this course we are assuming φ(1R) = 1S , this
makes S into an R-module.

Definition 5. An R-algebra is a ring S together with a ring HM R → S.
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Note: If R is a ring, then R is an R-module.

Definition 6. Let M be an R-module. Then, N ⊆ M is a submodule of M (we
write N ≤ M) iff

(1) (N,+) ≤ (M,+)
(2) ∀r ∈ R,∀n ∈ N, rn ∈ N .

Note: The R-submodules of R are the ideals.
If N ≤ M , then M/N has a module structure by r(m + N) = rm + N . This is

well-defined since m1 + N = m2 + N iff m1 −m2 ∈ N , so r(m1 −m2) ∈ N .

Definition 7. If M,N are R-modules, then φ : M → N is a module HM iff
(1) φ(m1 + m2) = φ(m1) + φ(m2)
(2) φ(rm) = rφ(m).

First IM theorem: im(φ) ∼= M/ ker(φ).

Claim 4. Let M be an R-module, X ⊆ M . The least submodule of M con-
taining X is

(X)R =def {
∑

finite
rixi : ri ∈ R, xi ∈ X}

Definition 8. We say M is finitely generated(fg) iff there is X ⊆ M finite such
that (X)R = M .

Fact: There is an integral domain R and a fg R-module M such that not all
submodules of M are fg

Example: Let R = Z[x1, x2, . . .] =
⋃

i∈N Z[x1, . . . , xi]. Let M = R, and let
N = (x1, x2, . . .)R. Note that M = (1)R, so M is f.g. However, N is not f.g.
Suppose that N = (f1, . . . , fk)R. Choose m so large that all variables appearing in
the fis are xj for some j < m. As xm ∈ N , we have xm =

∑
gifi for some gi ∈ R.

Set xj = 0 for j < m and xm = 1 to get a contradiction, as all polynomials in N
have no constant term.


