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SCRIBE: SPAS BOJANOV

Theorem: if R is local N’ian ring then dim(R) < oco.

Running assumption for today: R is a N’ian local ring with maximal ideal I.

We will associate to such an R two other numbers 6(R) and d(R) and prove that
6(R) > d(R) > dim(R) > 6(R).

Last time: We were given a N’ian local R with maxl ideal I, an I-primary ideal
Q, a fg R-module M and a Q-stable filtration {M,,} of M. We showed that there is
a polynomial g wuch that for large n we have [(M/M,,) = g(n). The following facts
about g are critical: the degree of g is bounded by the least size of a generating set
for @, and the leading term of g is independent of the choice of @-stable filtration.

Subtle point: What do we mean by I[(M/M,,)? Each M, /M, is fg as a module
over the Artinian ring R/(Q. hence has finite length as an R/@Q-module. The R-
submodules coincide with the R/Q-submodules so M,, /M, 1 has the same finite
length as an R-module. Now M/M, is just an R-module but by additivity its
length I(M/M,,) as an R-module is the sum of the lengths of the M, /M1 (as
R-modules or as R/Q-modules).

Now the natural @-stable filtration for M is {Q"M}. Using this we define a
polynomial xéf such that Xg[(n) = [(M/Q™M) for all large n. Setting M = R as
well we define a polynomial x¢q such that xo(n) = I(R/Q™) for all large n.

Lemma: The degree of x¢ is independent of the choice of the I-primary ideal Q.

Proof: Since I is I-primary it’s enough to compare xg with x;. Since R is N’ian
and /@ = I there exists n such that I C Q C I, and so I™" C Q™ C I™ and
hence [((R/I™™) > I(R/Q™) > I(R/I™) for all m. But now for large enough m
we have xr(mn) > xgo(m) > xr(m), so by elementary considerations of the rate of
growth of a polynomial function x¢ and x; have the same degree.

Now define d(R) to be the degree of x¢ for @ any I-primary ideal of R. We also
define §(R) to be the least s such that some I-primary ideal has a generating set
of size s.

Lemma: §(R) > d(R).

Proof: By definition d(R) is the degree of %, so by results from last time it is
bounded by §(R).

Before closing the circle of inequalities we need a technical lemma:

Lemma: Let M be fg as an R-module and let » € R be such that rm =0 —
m = 0, that is to say the map m +— rm is injective. Let N = rM and M’ = M/N.
Then deg(xgl) < deg(xg).

Proof: We start by noting that m +— rm is an IM from M to N. The filtration
{Q™M?} induces filtrations {Q"M NN} and {Q"M'} of N and M’ respectively. By
a lemma from our discussion of inverse limits and completions (or directly) we can
derive from the usual 0 - N — M — M’ = M/N — 0 an exact sequence

0— N/(Q"MAN) — M/Q"M — M'/Q"M' — 0.
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Now by additivity if g is the polynomial such that g(n) = I((N/(Q™"M N N)) for
all large n, then g(n) — Xg(n) + Xg/ (n) = 0 for all large n, and so necessarily
9—x4 + XJ‘QJ, = 0. By the A-R lemma {Q"M N N} is a stable filtration of N, and
so the leading term of g equals the leading term of Xg ; but since N ~ M of course
Xg = xéSI , and so we conclude that the leading terms of g and Xég/[ cancel and thus

xéf " has a smaller degree.

Corollary: If r is not a zero-divisor in R then d(R/(r)) < d(R).

The significance of the corollary is that it gives us a natural way of structuring
an induction on d(R).

Lemma: d(R) > dim(R).

Proof: By induction on d(R).

d(R) = 0. Then [(R/I") is constant for large n, so [(I"/I""1) = 0 for large n
and thus I™ = I™*! for large n. In our discussion of Artinian rings we saw that any
local N’ian ring where this happens is Artninian, and in particular has dimension
Zero.

Induction step: d(R) > 0. We show that every chain of prime ideals Py C
Py ... C P; has d < d(R), which suffices by the definition of dim(R) as the supre-
mum of the lengths of such chains. Since R has a unique maximal ideal I we have
P;C1I.

Let r € Py\ P1. Welet R = R/Py and R” = R'/(r + P,), and note that r + P
is not a zero divisor in R’. By the last corollary we conclude that d(R”) < d(R’).

Now R’ is a N’ian local ring with maximal ideal I’ where with a mild abuse of
notation I’ = I/ Py. Tt is routine to check that for every n, the surjective quotient
map R — R’ induces a surjective R-module HM R/I™ — R'/I'™; so the length of
R’/I'™ as an R-module is less than or equal to the length of R/I™ as an R-module,
but since the R-submodules of R'/I'™ coincide with its R'-submodules we see that
the length of R//I'™ as an R’-module is less than or equal to the length of R/I™ as
an R-module. So xE (n) < x%(n) for all large n, and hence d(R') < d(R).

So now we know d(R") < d(R) so can apply the induction hypothesis. Clearly
R" is the quotient of R by Py + (r), and since Py + (r) C P; the chain of primes
Py C Pi... C Pyinduces a chain of primes P’ C ... C P/ of length d — 1 in R".
By induction d — 1 < d(R"), so d < d(R) as required.

Before we prove dim(R) > §(R) we recall a few facts about primary decomposi-
tions in N’ian rings: every ideal I has an irredundant primary decomposition, and
the minimal primes of the decomposition are the inclusion-minimal elements of the
set of prime ideals which contain I. We call these the “minimal primes of I”.

Recall also that the height of a prime P is the dimension of the localisation Rp,
or more concretely the sup of the lengths of the chains of primes with last entry P.

Lemma: dim(R) > §(R).

Proof: Let R have dimension d and note that easily I is the unique ideal of
height d. We will produce by induction elements a,...aq of I so that every prime
containing (aq,...a;) has height at least ¢. It will follow easily that (aq,...aq) is
I-primary; so we produced an I-primary ideal with dim(R) = d generators and
hence §(R) < dim(R).

To start the induction, every prime containing the zero ideal has height at least
zero. Suppose that ¢ < d and we have chose ay,...a;_1. Let Pp,... P be those
primes among the minimal primes of (ay,...a;—1) which have height ¢ — 1 (if there
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are any). Now clearly I ¢ P; for all ¢ and so by today’s HW I ¢ U; P;, and we may
choose aq € I'\ U; P;.

Now consider a prime ideal @) containing (a1, ...aq), we claim that the height
of @ is at least ¢. Otherwise since @ contains (aq,...a;—1) it must be that @ has
height exactly ¢ — 1. Now @ is a prime containing (aq,...a;—1) so it contains one
of the minimal primes of (ai,...a;—1), P say. Now since P has height at least i — 1
and @ has height ¢ — 1, it must be that P = Q. So Q = P has height ¢ — 1 and is
among the P;, contradiction by the choice of aq.



