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SCRIBE: CLAIRE TOMESCH

Recall that R/I is an ID iff I is prime and R/I is a field iff I is maximal.

Definition 1. A poset is (P,≤) where ≤ is transitive (a ≤ b and b ≤ c implies
a ≤ c), reflexive (a ≤ a) and antisymmetric (a ≤ b and b ≤ a implies a = b).

It is easy to see that any family of sets ordered by inclusion is a poset. Conversely
if P is a poset and we define Ca = {b : b ≤ a} then the set of Ca ordered by inclusion
forms a poset isomorphic to P.

A maximal element in P is an element q such that ∀r r ≥ q =⇒ r = q.
We say that C ⊆ P is a chain iff C is linearly ordered that is for all a, b ∈ C we

have a ≤ b or b ≤ a. b is an upper bound for C iff ∀a ∈ C a ≤ b.
Zorn’s Lemma: If P is a poset such that every chain has an upper bound then

for every p there is q ≥ p such that q is maximal.
It is important to note that not all chains are necessarily of the form

a0 ≤ a1 ≤ a2 ≤ . . .

For example let X be uncountable and let P be the poset of countable subsets of X
ordered by inclusion. Then P has no maximal element even though every countable
chain has an upper bound.

The following is easy:

Lemma 1. Let R be a ring, F a nonempty family of ideals linearly ordered by
inclusion. Then the union

⋃
F is an ideal.

Theorem 1. Let R be a ring, I 6= R. Then there is J ⊇ I with J maximal.

Proof. Let P be the set of all ideals J with J 6= R, ordered by inclusion. Clearly
the maximal elements of P are the maximal ideals, so it suffices to show that chains
in P have bounds. Let C be a chain. Then 1 /∈

⋃
C so

⋃
C 6= R, and as we just

saw
⋃

C is an ideal. �

In particular if R 6= 0 then (0) is an ideal not equal to R so that R has at least
one maximal ideal.

We now discuss ring elements which are in some sense “pathological”.
We say that a ∈ R is nilpotent iff there is n > 0 with an = 0. a is a zero-divisor

iff ab = 0 for some nonzero b.
Let a 6= 0 be nilpotent and let n > 1 be least such that an = 0. Then an−1 6= 0

and aan−1 = 0 so a is a zero-divisor. In particular in an ID 0 is the only nilpotent
element.

If a is nilpotent then 1 + a is a unit with inverse 1− a + . . . an−1. In fact u + a
is a unit for all units u.

If J is an ideal then
√

J is the set of a so that an ∈ J for some n > 0, equivalently
a + J is nilpotent in R/J . We claim that

√
J is an ideal. If bn ∈ J then (ab)n =

1
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anbn ∈ J . Also if am, bn ∈ J then (a + b)m+n−1 ∈ J (expand it out as a sum of
terms aibj with i + j = m + n− 1, so that i ≥ m or j ≥ n).

J is radical iff J =
√

J or equivalently iff 0 is the only nilpotent in R/J . If P is
prime then R/P is an ID, so by the remarks above P must be radical. Note that
(0) ⊆ P and so

√
(0) ⊆

√
P = P , that is any nilpotent element is in every prime

ideal.
Remark: the intersection of any nonempty family of ideals is an ideal. So the

ideal
√

(0) of nilpotent elements is contained in the ideal formed by intersecting all
prime ideals of R. We claim that these ideals are equal, which amounts to showing
that for every non-nilpotent a there is a prime P with a /∈ P .

Definition 2. Let R be a ring. S ⊆ R is multiplicatively closed iff 1 ∈ S and
∀a, b ∈ S ab ∈ S.

Remark: it is allowed that 0 ∈ S but this will be a pathological case.
We can use the next result to manufacture prime ideals. If S = {1} it is just the

trick for producing maximal ideals we already discussed.

Theorem 2. Let S be multiplicatively closed with 0 /∈ S and let P be the set of
ideals disjoint from S. Then P is nonempty, P is closed under unions of chains,
and any maximal element of P is prime.

Proof. Since 0 /∈ S, (0) ∈ P. Clearly it is closed under union of chains. Let I be
maximal. Then 1 /∈ I as 1 ∈ S, so I 6= R. Also if a /∈ I then I ( I + (a), so by
maximality I + (a) meets S.

So if a, b /∈ I we may choose s, t ∈ S with s ∈ I + (a) and t ∈ I + (b). Then
st ∈ I + (ab), and since st ∈ S while I is disjoint from S we see that ab /∈ I. �


