
CA LECTURE 27

SCRIBE: YIMU YIN

WEAKEN THE RUNNING ASSUMPTIONS FOR A BIT: R IS JUST A RING
I IS A FIXED IDEAL AND ALL COMPLETIONS ARE IN THE I-ADIC TOPOL-
OGY

Easy to see that R̂ is a ring under the obvious operations, which can be defined
either in the Cauchy sequence picture or the inverse limit picture (in either case
operations are coordinatewise, with the added wrinkle that in the Cauchy sequence
picture we need to check we are getting well-defined operations on equivalence
classes of Cauchy sequences).

Now since Î is an R-module we may define Î which is an ideal of R̂. Note that the
I-topology on I coincides with the topology inherited from R with its I-topology.
In the Cauchy sequence picture elements of Î are represented by classes of Cauchy
sequences from I, in the lim

←
R/In picture by sequences (rn) with r1 = 0+ I ∈ R/I.

Now by general theory of completions we know that R̂ is complete (equal to
its own completion) when topologised using {În}. This is because by that same
general theory we have În/În+1 ' In/In+1 (this becomes very easy to see if you
look at things in the inverse limit picture).

But of course we may also choose to topologise and complete R̂ using {În}. This
is more mysterious. It is not too hard to see that În ⊆ În (an n-fold product of
cauchy sequences from I gives a Cauchy sequence from In) but they won’t be equal
in general.

It is easy to see that M̂ has the structure of a R̂-module. To be explicit we
define scalar multiplication so that the class of the cauchy sequnce (rn) times the
class of (mn) is the class of (rnmn). There is a natural map M → M̂ , where
m 7→ m̂ = [(m,m, m, . . .)] which is an R-module HM.

Moreover if α : M → N is an R-module HM then α[InM ] ⊆ InN so that
any cauchy sequence (mn) maps to a cauchy sequence (α(mn)). Easy to see we
can define α̂ : M̂ → N̂ and that we have defined a functor from R-modules to
R̂-modules.

The following diagram commutes:

M
α //

��

N

��

M̂
α̂ // N̂

We claim that if α is surjective then α̂ is surjective also. Note that routinely
α[IiM ] = IiN . Now let (ni) be a cauchy sequence in N , thinning out (as in the
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proof that the inverse limit picture is the same as the cauchy sequnce picture) we
may as well assume that ni−ni+1 ∈ IiN for all i. Choose m0 such that α(m0) = n0

and then proceed inductively by choosing xi ∈ IiM with α(xi) = ni+1 − ni and
then letting mi+1 = mi + xi.

Now we may also define an R-bilinear map from R̂ × M to M̂ by mapping
(rn),m to (rnm) and checking this respects equivalence of cauchy sequences (or
just compose M → M̂ and scalar multiplication as above). As usual this factors
through an R-linear map from R̂⊗R M to M̂ . We will use this map to analyse the
structure of M̂ , the slogan might be “reduce problems about cauchy sequences in
M to problems about cauchy sequences in R”.

In general the map R̂ ⊗R M → M̂ won’t be either injective or surjective. But
in a very simple case it is always an IM. Start by noting that M̂ ⊕N ' M̂ ⊕ N̂
as R̂-modules, because a pair of cauchy sequences is really the same thing as a
cauchy sequence of pairs. So easily for any integer m we have R̂m ' R̂m Then
using standard facts about tensor products (including the fact that tensor product
distributes over finite direct sums, which is an easy exercise) we have

R̂⊗Rm ' (R̂⊗R)m ' R̂m ' R̂m,

in summary R̂⊗ F ' F̂ when F = Rm.
Theorem: if M is fg then R̂ ⊗R M → M̂ is surjective, and if in addition R is

N’ian then it’s an IM.
Proof: since M is fg we have for some m a surjective HM F = Rm → M , so if

N ≤ M is the kernel we have a short exact 0 → N → F → M → 0. Tensoring
with R̂ and using an old result about tensor products and exact sequences we get
an exact R̂⊗N → R̂⊗ F → R̂⊗M → 0. We may also apply the hat functor and
get a (not necessarily exact) 0 → N̂ → F̂ → M̂ → 0 where we note that actually
the map F̂ → M̂ is surjective.

Now we use the maps R̂⊗K → K̂ for K = N,F, M to get a commutative

R̂⊗N

γ

��

// R̂⊗ F

β

��

// R̂×M

α

��

// 0

0 // N̂ // F̂
δ // M̂

where β is an IM, δ is surjective and the top row is exact. By an old HW we see
that α is surjective.

If R is N’ian then since F is fg, N is fg so that a) by the Artin-Rees argument
from last time the sequence 0 → N̂ → F̂ → M̂ → 0 is exact AND b) by the first
part of the theorem with N in place of M , the map γ is surjective (I forgot this
point in lecture I think). Now by appealing to that old HW again we see α is
injective.

It’s worth recording an easy corollary: if M is fg then M̂ is the image of the
map R̂ ⊗R M → M̂ , which is to say the R̂-submodule generated by the image of
the map M → M̂ (We will often write this as M̂ = R̂M which is formally wrong
but suggestive).
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RUNNING ASSUMPTION IS NOW (RE)STRENGTHENED SO THAT R IS
NOETHERIAN, I FIXED IDEAL AND ALL COMPLETIONS IN THE I-ADIC
TOPOLOGY.

Let J be any ideal of R, then J is fg as an R-module so that abusing notation as
above Ĵ = R̂J , or if you prefer Ĵ is the extension of J in R̂. In particular Î = R̂I

and so În = R̂In = În. So in particular

În/În+1 = În/În+1 ' In/In+1,

and so R̂ is actually complete in the Î-adic topology (which is now seen to coincide
with the topology from the filtration {În}. Finally if a ∈ Î then the power series

1− a + a2 − a3 . . .

converges by the completeness of R̂ in the Î-adic topology, and it is easy to see
that it converges to a multiplicative inverse for 1 + a (convergence here means, as
you might hope, that the sequence of partial sums approaches some limit). So Î is
contained in the Jacobson radical of R̂.

To finish we analyse the kernel of M → M̂ for M fg. Note that for any module
the kernel is

⋂
n InM .

Theorem (Krull): For M fg the kernel of M → M̂ is {m : ∃a ∈ I (1− a)m = 0}.
Proof: If m = am for a ∈ I then since m = aim for all i, we have m ∈

⋂
n InM .

For the converse let E =
⋂

n InM . By the A-R lemma the I-adic topology on E
equals the topology from the filtration {InM ∩E}, but since E = E ∩ InM for all
n the only open sets in the latter topology are ∅, E (it is indiscrete). Since IE is
an open set in the I-adic topology on E, IE = E, and so (by the lemmas leading
up to Nakayama) there is a ∈ I with (1− a)E = 0.

Corollary: If R is a Noetherian ID and I 6= R then
⋂

n In = {0}.


