CA LECTURE 24

SCRIBE: CLAIRE TOMESCH

Recall: any sequence of modules

0 A ! B 0

is a chain complex, the homology at A is the kernel of f and the homology at B
is the cokernel of f

So a map from one short exact sequence to another gives us an 8-term exact
sequence of kernels and cokernels (as explained in the supplement to the notes on
lecture 23).

Now we return to studying inverse limits. If A and B are inverse systems of
groups then a morphism from A to B is a family of HMs f = {f, : A, — By} such
that
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Clearly it induces a map lim f from lim A to lim B, and we have made the lim

construction into a functor.
Theorem: if 0 - A — B — C — 01is exact then 0 — lim A — lim B — lim C is

exact. If moreover the system A is surjective then 0 — lim A — lim B — limC — 0

— — —

is exact.

Before the proof a quick digression on direct sums and direct products: let
{A; : i € I} be a family of R-modules. Then the Cartesian product [], 4; is an
R-module with the obvious + and scalar multiplication operations, and we call
this the direct product. The direct sum &;A; is the submodule consisting of those
eIl Ai with {i: f(i) # 04,} finite.

Remark: Let m; : f — f(i) be the obvious projection map. Then [], A; and the
m; form a product in the categorical sense (that is to say make I into a category
whose objects are the elements of I with only identity morphisms, then a product
is just a limit for the diagram which maps i to A;).

Remark: Similarly define j; : A; — @;4; so that j;(a) : i — a, ji(a) : j — 0 for
j #i. Then ¢;A; and the j; form a coproduct, that is a colimit for the diagram
from the previous remark.

Remark: If {4, :9 € I} and {B; : i € I} are families of R-modules and we have
HMs {f;: A — B; :i € I} then we can form a HM [], f; in the obvious way.

1



2 SCRIBE: CLAIRE TOMESCH

Proof of theorem: define d4 a map from [[ A, to [[ A, by da : (an) — (an —
T4 10 (ant1)). Then the kernel of dy is the inverse limit of A. Similarly for B and

Now consider the diagram

fn H n JN
0 ma, —23 1B, L 1o 0
da dp dc
f'n, H n 9n
0 A, —u [1B. ! [1C. 0

Easily each row is exact. To see it commutes just observe that

dB(H frn)(an) = dp(fn(an)) = (fn(an)_ﬂf+1nfn+1(an+l)) = (fn(an)_fn7f+1n(an+l)) = (H fn)da(an)

where we used the fact that f = (f,) is a HM of inverse systems to commute f’s
and 7’s.
So we get an exact sequence 0 — ker(dsg) = limA — limB — limC —

coker(da). To finish note that if A is surjective then easily d 4 is surjective, and so
coker(da) = 0.

Cultural note: we can view A — coker(da) as a functor which measures the ex-
tent to which lim preserves exact sequences. Such “derived functors” are important

when you go further in homological algebra.

NOTE: THE CONVENTION THAT ALL GROUPS ARE ABELIAN IS NOW
TEMPORARILY SUSPENDED WHILE WE DISCUSS TOPOLOGICAL GROUPS.

A topological group is a set G equipped with a topology and a group structure
such that the maps g — g~! and (g, h) — gh are continuous.

Key idea: topological groups are very homogeneous as topological spaces.

Recall that an AM of a topological space X is just a permutation 7 of X which
permutes the open sets, or equivalently such that = and 7~! are both continuous.
We will refer to maps from G to G which have this property as “topological AMs”,
of course they need not be AMs for the group structure.

In particular if we fix ¢ € G then each of the maps h +— h™', h + gh, h +— hg,
h — ghg~! is a topological AM.

Recall the separation axioms Ty, 71,75 from the “more topology” handout. In
general they are distinct but we show that for topological groups they coincide.

Ty implies Ty: Consider the continuous map (g, h) — gh~!. By the T} property
{e} is closed, so its preimage A = {(g,9) : g € G} is closed in G?. Now let a # b in
G so that (a,b) ¢ A. The complement of A is open, hence is a union of rectangles
U x V with U and V open; so we may find U > a and V > b open sets with
UxVNA=0,thatisUNV =0.

Ty implies Ty: It will suffice to show that {e} is closed. If we can show thus we
can apply the topological AM h — gh to conclude that {g} is closed.

So let g # e and try to find an open set which contains g but not e. The Ty
axiom provides either this (in which case we are done) or an open set U with e € U
and g ¢ U. In this case use the fact that h — gh~! is a topological AM to see that
gU~! is open with g € gU ! and e ¢ gU 1.



