
CA LECTURE 24

SCRIBE: CLAIRE TOMESCH

Recall: any sequence of modules

0 // A
f

// B // 0
is a chain complex, the homology at A is the kernel of f and the homology at B

is the cokernel of f
So a map from one short exact sequence to another gives us an 8-term exact

sequence of kernels and cokernels (as explained in the supplement to the notes on
lecture 23).

Now we return to studying inverse limits. If A and B are inverse systems of
groups then a morphism from A to B is a family of HMs f = {fn : An → Bn} such
that
A0

f0

��

A1
πA
10

oo

f1

��

A2

f2

��

πA
21

oo . . .oo

B0 B1
πB
10

oo B2
πB
21

oo . . .oo

Clearly it induces a map lim
←

f from lim
←

A to lim
←

B, and we have made the lim
←

construction into a functor.
Theorem: if 0 → A → B → C → 0 is exact then 0 → lim

←
A → lim

←
B → lim

←
C is

exact. If moreover the system A is surjective then 0 → lim
←

A → lim
←

B → lim
←

C → 0
is exact.

Before the proof a quick digression on direct sums and direct products: let
{Ai : i ∈ I} be a family of R-modules. Then the Cartesian product

∏
i Ai is an

R-module with the obvious + and scalar multiplication operations, and we call
this the direct product. The direct sum ⊕iAi is the submodule consisting of those
f ∈

∏
i Ai with {i : f(i) 6= 0Ai} finite.

Remark: Let πi : f 7→ f(i) be the obvious projection map. Then
∏

i Ai and the
πi form a product in the categorical sense (that is to say make I into a category
whose objects are the elements of I with only identity morphisms, then a product
is just a limit for the diagram which maps i to Ai).

Remark: Similarly define ji : Ai → ⊕iAi so that ji(a) : i 7→ a, ji(a) : j 7→ 0 for
j 6= i. Then ⊕iAi and the ji form a coproduct, that is a colimit for the diagram
from the previous remark.

Remark: If {Ai : i ∈ I} and {Bi : i ∈ I} are families of R-modules and we have
HMs {fi : A → Bi : i ∈ I} then we can form a HM

∏
i fi in the obvious way.

1



2 SCRIBE: CLAIRE TOMESCH

Proof of theorem: define dA a map from
∏

An to
∏

An by dA : (an) 7→ (an −
πA

n+1n(an+1)). Then the kernel of dA is the inverse limit of A. Similarly for B and
C.

Now consider the diagram

0 //
∏

An

dA

��

∏
fn

//
∏

Bn

dB

��

∏
n gn

//
∏

Cn

dC

��

// 0

0 //
∏

An

∏
fn

//
∏

Bn

∏
n gn

//
∏

Cn
// 0

Easily each row is exact. To see it commutes just observe that

dB(
∏

fn)(an) = dB(fn(an)) = (fn(an)−πB
n+1nfn+1(an+1)) = (fn(an)−fnπA

n+1n(an+1)) = (
∏

fn)dA(an)

where we used the fact that f = (fn) is a HM of inverse systems to commute f ’s
and π’s.

So we get an exact sequence 0 → ker(dA) = lim
←

A → lim
←

B → lim
←

C →
coker(dA). To finish note that if A is surjective then easily dA is surjective, and so
coker(dA) = 0.

Cultural note: we can view A 7→ coker(dA) as a functor which measures the ex-
tent to which lim

←
preserves exact sequences. Such “derived functors” are important

when you go further in homological algebra.
NOTE: THE CONVENTION THAT ALL GROUPS ARE ABELIAN IS NOW

TEMPORARILY SUSPENDED WHILE WE DISCUSS TOPOLOGICAL GROUPS.
A topological group is a set G equipped with a topology and a group structure

such that the maps g 7→ g−1 and (g, h) 7→ gh are continuous.
Key idea: topological groups are very homogeneous as topological spaces.
Recall that an AM of a topological space X is just a permutation π of X which

permutes the open sets, or equivalently such that π and π−1 are both continuous.
We will refer to maps from G to G which have this property as “topological AMs”,
of course they need not be AMs for the group structure.

In particular if we fix g ∈ G then each of the maps h 7→ h−1, h 7→ gh, h 7→ hg,
h 7→ ghg−1 is a topological AM.

Recall the separation axioms T0, T1, T2 from the “more topology” handout. In
general they are distinct but we show that for topological groups they coincide.

T1 implies T2: Consider the continuous map (g, h) 7→ gh−1. By the T1 property
{e} is closed, so its preimage ∆ = {(g, g) : g ∈ G} is closed in G2. Now let a 6= b in
G so that (a, b) /∈ ∆. The complement of ∆ is open, hence is a union of rectangles
U × V with U and V open; so we may find U 3 a and V 3 b open sets with
U × V ∩∆ = ∅, that is U ∩ V = ∅.

T0 implies T1: It will suffice to show that {e} is closed. If we can show thus we
can apply the topological AM h 7→ gh to conclude that {g} is closed.

So let g 6= e and try to find an open set which contains g but not e. The T0

axiom provides either this (in which case we are done) or an open set U with e ∈ U
and g /∈ U . In this case use the fact that h 7→ gh−1 is a topological AM to see that
gU−1 is open with g ∈ gU−1 and e /∈ gU−1.


