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SCRIBE: PETER LUMSDAINE

Limits ctd: we have a diagram (in the very general sense), that is a (covariant)
functor F from I to C and have the notion of a limit for the diagram, that is a final
object in the category of cones. The limit may not exist but as usual if it exists it
is unique up to a unique IM.

Suppose that we also have a (covariant) functor T : C → D. Then T ◦ F is a
functor from I to D so we may think of it as a diagram in D. What is more if we
have a cone c, {fa} over F then it is routine to check that Tc, {Tfa} is a cone over
T ◦ F . Now the question arises: does the functor T preserve limits?

We will prove a basic result: if T has a left adjoint then T preserves limits.
Recall that a left adjoint is a functor S : D → C such that we can set up a natural
bijection between Hom(d, T c) and Hom(Sd, c) for all objects c of C and d of D. If
the naturality conditions looked mysterious to you then the following proof should
provide motivation for them.

In the handout where these ideas were introduced we presented the naturality
condition as one equation. Here it is more perspicuous to present the condition in
an equivalent form as two equations. To lighten the notation if f : d → Tc in D we
write f∗ : Sd → c for the corresponding morphism in C (of course the map f 7→ f∗

depends on c and d)
Naturality condition N1: For all c′ and all g : c → c′, (Tg ◦ f)∗ = g ◦ f∗.
Naturality condition N2: If h : d′ → d then (f ◦ h)∗ = f∗ ◦ Sh.
So suppose that F : I → C is a diagram and c, {fa} is a limit of this diagram.

Consider an arbitary cone d, {ga} over the diagram T ◦F . Explicitly ga : d → TFa
and if h : a → b in I then gb = TFh ◦ ga.

The adjunction gives us for each ga a corresponding morphism g∗a : Sd → Fa,
and by N1 above g∗b = (TFh ◦ ga)∗ = Fh ◦ g∗a so that Sd, {g∗a} gives us a cone over
F . By the definition of limit there is a unique morphism of cones from this cone
to the limit cone c, {fa}, or more explicitly there is a unique morphism h : Sd → c
such that g∗a = fa ◦ h for all a.

Now h = i∗ for some i : d → T (c), so by N1 again g∗a = fa ◦ i∗ = (Tfa ◦ i)∗ and
hence ga = Tfa ◦ i so that i gives a cone morphism from d, {ga} to Tc, {Tfa}. If j
is any such cone morphism then by yet another appeal to N1 we have

g∗a = (Tfa ◦ j)∗ = fa ◦ j∗

for all a, so i∗ = h = j∗ and thus i = j. We have showed that Tc, {Tfa} is a limit
as required.

So what is N2 good for? It can be used to show that S preserves colimits
which are defined as follows: a cocone over a diagram G : I → D is given by
d, {gb : Gb → d} such that if h : a → b then gb ◦ Gh = ga. A morphism from
d1, {g1

b} to d2, {g2
b} is g : d1 → d2 such that g ◦ g1

b = g2
b for all b, and a colimit is an

initial cocone.
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Just to make life more confusing: in algebra and topology limits as defined here
are often called “inverse limits” and colimits are “direct limits”.

Irritating point: exact sequences of rings do not behave so nicely because my
convention on HMs implies that a HM 0 → R only exists when R = 0. Since I
want to use exact sequences in a discussion of inverse limits and completions of
rings I will adopt the following procedure: prove results about inverse limits and
completions of abelian groups (a context where exact sequences behave well) and
then remember the ring structure at the end.

Convention: until further notice all groups are abelian and are written additively
(group operation is +, identity is 0, inverse of g is −g)

Inverse limits of groups: we have (abelian!) groups Gn for n ∈ N and maps πnm

for m ≤ n satisfying πmm = id, and πca = πba ◦ πcb for a ≤ b ≤ c. This is a special
case of the kind of diagram considered above.

Theorem: if we define lim
←

Gn to be the set of all sequences (gn : n ∈ N) such

that πnm(gn) = gm for m ≤ n (eqivalently πn+1n(gn+1) = gn for all n) then

(1) lim
←

Gn is a group under coordinatewise addition.

(2) The maps fi : (gn) 7→ gi commute with the πmn so we have a cone.
(3) The cone we just described is a limit of the diagram of G’s and π’s.

Proof: easy!
Note that (0) is the identity. We say that the system is surjective when all

the πnm (or equivalently all the πn+1n) are surjective. Example: the inverse limit
system defining Zp on today’s HW.

Of course we want to make the collection of inverse limit systems into a category.
Not too surprisingly: a morphism from the system with groups Gn and maps πG

nm

to the system with groups Hn and maps πH
nm consists of group HMs fn : Gn → Hn

such that fm ◦πG
nm = πH

nm ◦fn for all m ≤ n (equivalent: fn ◦πG
n+1n = πH

n+1n ◦fn+1

for all n)
Peter Lumsdaine points out that if we think of the inverse limit systems as

functors (defined on a category whose objects are the elements of N, with a unique
morphism from n to m iff m ≤ n) then these morphisms of inverse limit systems
are precisely the natural transformations.

Now routine to check that the inverse limit construction gives us a functor from
inverse limit systems to groups. What does it preserve? This brings us to something
I’ve been putting off.

Homological algebra: Fix ring R. A chain complex of R-modules is a sequence
of R-modules Cn (n may run through any contiguous range of integers) together
with HMs ∂n : Cn+1 → Cn such that ∂n ◦∂n+1 = 0 for all n where this makes sense.

Remark: this is a weakening of the concept of exact sequence. Applying some
reasonable functor to an exact sequence will typically give a chain complex.

Define “homology modules” to measure the failure of exactness: formally Zn(C) =
ker(∂n−1) and Bn(C) = im(∂n). Clearly Bn(C) ≤ Zn(C) ≤ Cn, we define the nth
homology module Hn(C) = Zn(C)/Bn(C).

Cultural note: This comes from topology where the ∂n are “boundary maps”.
Often we speak of Bn as consisting of “boundaries” and Zn as consisting of “cycles”.

Remark: the homology of a sequence 0 → A → B → 0 at A is just the kernel of
the map A → B, and the homology at B is just the cokernel.
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A morphism of chain complexes is just a family of HMs which commute with
the boundary maps. Explicitly if we have Cn and Dn then the morphism f is a
collection of maps fn : Cn → Dn such that fn ◦ ∂C

n = ∂D
n ◦ fn+1.

Routinely: fn maps Zn(C) to Zn(D) and Bn(C) to Bn(D), and so induces a
map Hn(f) : Hn(C) → Hn(D) by z + Bn(C) 7→ fn(z) + Bn(D). Hn is a functor
from chain complexes of R-modules to R-modules.

THIS BIT TO BE FILLED IN.


