CA LECTURE 2

SCRIBE: PETER LUMSDAINE

We continue and conclude the proof that if R is a UFD then R[x] is also one. Throughout this lecture R is a UFD.

Lemma 1. (Gauss' lemma) If f and g are primitive then fg is primitive.

Proof. Otherwise there is $p \in R$ irreducible such that p divides all the coefficients of fg. Since R is a UFD, p is prime. So P = (p) is a prime ideal and R/P is an ID.

The quotient map $R \to R/P$ induces a HM $R[x] \to R/P[x]$, We write $f \mapsto \overline{f}$ for this HM of polynomials. Clearly $\overline{fg} = \overline{fg} = 0$. R/P[x] is an ID because R/P is an ID, so without loss of generality $\overline{f} = 0$. But if $\overline{f} = 0$ then p divides all coefficients of f, a contradiction as f is primitive.

Returning to the proof that R[x] is a UFD, we note that if $f \in R[x]$ is irreducible then f is primitive if and only if $\deg(f) > 0$.

Lemma 2. Let f and g be primitive in R[x]. Then f and g are associates in F[x] iff they are associates in R[x].

Proof. Let g = Af/B where $A, B \in R$ and $B \neq 0$. Then Af = Bg so $A \neq 0$. A and B are both gcd's for the coefficients of Af = Bg, so A and B are associates in R and A/B is a unit of R.

Lemma 3. If $f \in F[x]$ is nonzero then it has an F[x]-associate g which is in R[x] and primitive. What is more g is unique up to associates in R[x].

Proof. First find $C \in R$ nonzero such that $Cf \in R[x]$, then let D be a gcd for the coefficients of Cf and let g = Cf/D. The uniqueness follows from the previous lemma.

Lemma 4. Let $f \in R[x]$ be primitive and let $f = g_1 \dots g_n$ with $g_i \in F[x]$. Then $f = h_1 \dots h_n$ where $h_i \in R[x]$ is a primitive F[x]-associate of g_i .

Proof. Let $a_i \in F$ be such that $a_i g_i \in R[x]$ is primitive. Then by Gauss $f \prod_i a_i$ is primitive, so by a previous lemma $a = \prod a_i$ is a unit of R. Now let $h_1 = a^{-1} a_1 g_1$ and $h_i = a_i g_i$ for i > 1.

Remark: the hypothesis of primitivity in the next Lemma is needed for both directions. For example 2 is irreducible in $\mathbb{Z}[x]$ and a unit in $\mathbb{Q}[X]$ while 2x is composite in $\mathbb{Z}[x]$ but irreducible in $\mathbb{Q}[x]$.

Lemma 5. Let $f \in R[x]$ be primitive. Then f is irreducible in R[x] if and only if f is irreducible in F[x].

Proof. Let the primitive polynomial f be irreducible in R[x] and f = gh in F[x]. Then using the previous lemma, replacing g and h by suitable F[x]-associates we may assume $g, h \in R[x]$. Without loss of generality g is a unit in R[x] and hence in F[x]. Conversely let the primitive polynomial f be irreducible in F[x] and f = gh in R[x]. Withut loss of generality g is a unit in F[x], so g is a nonzero element of R. Now g divides all the coefficients of the primitive f so g is a unit in R.

Finally we can prove that R[x] is a UFD. As usual there are two main claims, Existence and Uniqueness. Recall that both R and F[x] are UFDs.

Existence of factorisations: let $f \in R[x]$ be a nonzero nonunit. Write f = Cg where $C \in R$ is nonzero and $g \in R[x]$ is primitive. Either C is a unit in R, or C factors as $C_1 \ldots C_m$ where the C_i are irreducible in R. The C_i are irreducibles of R[x].

Either g is a unit in F[x] (in which case g is a unit in R) or $g = g_1 \dots g_n$ where the g_i are irreducible in F[x]. Replacing by appropriate associates we may assume that the g_i are primitive elements of R[x] and hence are irreducible in R[x].

This gives us a factorisation.

Uniqueness of factorisation: let $f = C_1 \dots C_m g_1 \dots g_n = D_1 \dots D_k h_1 \dots h_l$ where the C's and D's are irreducibles of R and the g's and h's are primitive irreducibles of R[x].

By Gauss $\prod_i g_i$ and $\prod_i h_i$ are primitive, so as usual $\prod_i C_i$ and $\prod_i D_i$ are associates in R. Since R is a UFD the C's and D's coincide up to permutation and R-associates.

Similarly $\prod_i g_i$ and $\prod_i h_i$ are associates in F[x], so since F[x] is a UFD the g's and h's coincide up to permutation and F[x]-associates. If g_i and h_j are associates in F[x] they are associates in R[x], so the g's and h's coincide up to permutation and R[x]-associates.