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Let k be a field and M a k-module (that is a vector space over k). Then M is
A’ian iff M is N’ian iff M is finite dimensional iff M is fg. The proof is easy linear
algebra.

Definition: if R is a ring then a chain of length n in R is Py C ... C P, with
the P; prime. The dimension of R is the sup of the lengths of the chains of prime
ideals, or oo if there exist chains of unbounded length.

Easily dim(R) = 0 iff every prime ideal is maximal.

Recall that if I is an ideal then I™ is the ideal generated by all products a; ... an,
with a; € I. We say that I is nilpotent iff I = 0 for some n.

Easy remark: in a N’ian ring the nilradical is nilpotent.

Theorem: if R is A’ian then the nilradical is nilpotent.

Proof: Let N be the nilradical and consider the decreasing chain of ideals N*.
Suppose N is not nilpotent then N* = I # 0 for all large k.

Let X be the set of ideals J with I.J # 0, then X is not empty because R (or I
or N)isin X. let J be minimal in X.

There is ¢ € J with ¢I = (¢)I # 0, and of course (¢) C J so that by minimality
(¢) = J. Now (eI)I = cI? = cI # 0 and ¢I C J, so ¢ = J by minimality again.
Since ¢ € J we have ¢ = ed for some d € I. d is nilpotent and so 1 — d is a unit,
hence ¢ = 0 and we have a contradiction.

Lemma: Let R be a ring such that the zero ideal is a finite product of (not
necessarily distinct) maximal ideals My ... M,. Then R is N'ian iff R is A’ian.

Proof: Let Iy = R and I; = M, ... M; for j > 0. Then as we remarked at the
end of last time:

(1) The ideals K of R such that ;41 C I; are in an inclusion-preserving bijec-
tion with the R-submodules of I;/I; 1.

(2) I;/Ij41 can be seen as an R-module or as an R/M;1-module.

(3) The R-submodules of I;/I;; are precisely the subspaces when we consider
it as a VS over the field R/M, 1.

(4) In particular I;/I;41 is an Artinian R-module iff it is a FD VS over R/M; 14
iff it is a Noetherian R-module.

Now suppose that R is a N'ian ring. By standard properties of N’ian modules,
each ideal I; and each quotient I;/I;;1 is a N’'ian R-module. So each I;/I;, is an
A’ian R-module. Now we argue by backwards induction that each I; is an A’ian
R-module, using the fact from last time that for a module to be A’ian it is sufficient
to have an A’ian submodule with an A’ian quotient.

Theorem : TFAE for a ring R

(1) Ris A’ian.
(2) R is N’ian of dimension zero.
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Proof: First let R be A’ian. The nilradical N is the intersection of all the prime
ideals, so (by work last time) N = My N... M, where the M; are the finitely many
maximal ideals. Fix k with N* = 0, then

M. MF=(M...M,)"C (M N...M,)"=N*=o.

So 0 is a product of maximal ideals and thus R is N’ian. We already saw that R
has dimension zero.

Conversely let R be N’ian of dimension zero. Since R is N’ian all ideals are
decomposable in particular we may fix an irredundant decomposition 0 = Q1 N
... @y where the Q; are P;-primary. Taking radicals the nilradical N is

VO=vVQ1n...Qn=/Q1n.../Q.=P.N...P,.

Since R has dimension zero the P; are maximal, and since R is N’ian the nilradical
N is nilpotent. Now we argue exactky as before that 0 is a product of maximal
ideals and thus that R is Artinian.

Now we make our first serious use of Nakayama: suppose that R is a N’ian local
ring with maximal ideal M. Note that the Jacobson radical of R is M and that
all ideals of R are fg as R-modules. Consider the decreasing chain of ideals M™. It
may stabilise or not. If M™ = M™*! then applying Nakayama with M as the ideal
and M™ as the fg R-module we see M™ = 0, in which case arguing as in the last
theorem R is A’ian. Otherwise the M™ form an infinite strictly decreasing chain.

Defn: Ideals I and J in a ring R are comazimal iff I + J = R.

Lemma: If I and J are comaximal then INJ = 1J.

Proof: Asusual IJ CINJ.letl=a+bforael,be Jandletce INJ;then
c=ac+cbelld.

Lemma: If /T and v/J are comaximal then so are I and .J.

Proof: Otherwise let P be prime with I+.J C P. Then I C Pso VI C VP = P,
similarly J C P, and I +J C P # R. Contradiction!



