CA LECTURE 16

SCRIBE: GEORGE SCHAEFFER

Start with some generalities: suppose that R is a ring, I is an ideal of R and M is an R-module. Then IM is the least submodule of M containing all products am with $a \in I$ and $m \in M$, or more explicitly IM consists of all finite sums $\sum_i a_i m_i$ where $a_i \in I$ and $m_i \in M$. It's easy to see that if we set (r+I)m = m + IM then M/IM is an R/I-module.

Now we briefly discuss fg *R*-modules. Suppose that *M* is fg and is generated by $m_1, \ldots m_n$. Let ϕ be an *R*-linear map and write

$$\phi(m_j) = \sum_{i=1}^n a_{ij} m_i,$$

where we note that there may be many choices for the a_{ij} . We can see $A = (a_{ij})$ as an $n \times n$ matrix which represents ϕ .

Fact (the "Cayley-Hamilton theorem"): if p is the determinant of the matrix xI - A then $p \in R[x]$ is monic and $p(\phi) = 0$, to be more explicit if $p = \sum_{i=0}^{n} a_i x^i$ then for all $m \in M$ we have $\sum_{i=0}^{n} a_i \phi^i(m) = 0$.

Proof: Computation which we omit. Maybe sketch later.

We only use the corollary: if M is fg, I is an ideal, and ϕ is a linear map from M to M with $im(\phi) \subseteq IM$, then there is $p = x^n + \sum_{i < n} a_i x^i$ such that $a_i \in I$ and $p(\phi) = 0$.

A very important corollary is

Nakayama's lemma: if I is contained in the Jacobson radical of R, M is fg and M = IM then M = 0.

Proof of Nakayama: let $\phi = id_M$ then $im(\phi) = M \subseteq IM = M$, so we get that there is $a \in I$ such that (1 + a)m = 0 for all m. Since a is in the Jacobson radical, 1 + a is a unit and so m = 0 for all $m \in M$ that is M = 0.

Now we discuss integrality: this is a generalisation of algebraicity in field theory but is somewhat less well-behaved (in particular the notion of the algebraic closure of a field has no exact parallel).

If A and B are rings with $A \leq B$ and $b \in B$, we say b is *integral over* A iff p(b) = 0 for some monic $p \in A[x]$.

We need the notion of a *faithful* module: M is faithful iff Ann(M) = 0 where Ann(M) is the ideal of R given by

$$\operatorname{Ann}(M) = \{ r \in R : \forall m \in M \ rm = 0 \}$$

The following characterisations are very useful:

Theorem 1. Let $A \leq B$ and $b \in B$.

- (1) b is integral over A.
- (2) A[b] is module finite over A.
- (3) There is a subring B' of B such that $A[b] \subseteq B'$ and B' is module finite over A.

(4) There is a faithful A[b]-module M which is fg as an A-module.

Proof. To show 1 implies 2, suppose that b is integral over A. We have an equation $b^n = \sum_{i < n} a_i b^i$ with $a_i \in A$ and by an easy induction all powers of b lie in the A-submodule generated by $\{b^j : j < n\}$.

To show 2 implies 3 let B' = A[b]. To show 3 implies 4 let M = B' (note: if $R \leq S$ then S is always a faithful R-module, because if $r \in Ann(S)$ then r = r1 = 0)

Finally we show 4 implies 1. Consider the map $\phi : m \mapsto bm$, this is A-linear and so there is monic $p \in A[x]$ with $p(\phi) = 0$. This is equivalent to saying that p(b)m = 0 for all $m \in M$, and by faithfulness we have p(b) = 0.

Remark: If k and l are fields with $k \leq l$ then $b \in l$ is algebraic over k iff it is integral over k.

Definition 1. Let $A \leq B$.

- (1) The integral closure of A in B is the set of $b \in B$ which are integral over A.
- (2) B is integral over A iff all $b \in B$ are integral over A, that is the integral closure of A in B is B.
- (3) A is integrally closed in B iff all elements which are integral over A are in A, that is the integral closure of A in B is A.

Theorem 2. Let A and B be rings with $A \leq B$. The integral closure of A in B is a subring of B.

Proof. Let b_1 and b_2 be integral over A. Immediately from the definition b_2 is integral over $A[b_1]$, so $A[b_1]$ is module finite over A and also $A[b_1, b_2]$ is module finite over $A[b_1, b_2]$ is module finite over A, so that by clause 3 in the characterisation of integrality above all elements of $A[b_1, b_2]$ are integral over A. In particular $b_1 + b_2$ and b_1b_2 are integral over A.

Theorem 3. Let A, B, C be rings with $A \leq B \leq C$. If B is integral over A and C is integral over B then C is integral over A.

Proof. Let $c \in C$ and let $f \in B[x]$ be monic with f(c) = 0. Let b_1, \ldots, b_m be the coefficients of f. Arguing as in the last proof $B' = A[b_1, \ldots, b_m]$ is module finite over A, and since $f \in B'[x]$ we see that c is integral over B' so that B'[c] is module finite over B'. Hence B'[c] is module finite over A, thus (clause3 in the equivalence again) c is integral over A.