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SCRIBE: GEORGE SCHAEFFER

Start with some generalities: suppose that R is a ring, I is an ideal of R and M
is an R-module. Then IM is the least submodule of M containing all products am
with a ∈ I and m ∈ M , or more explicitly IM consists of all finite sums

∑
i aimi

where ai ∈ I and mi ∈ M . It’s easy to see that if we set (r + I)m = m + IM then
M/IM is an R/I-module.

Now we briefly discuss fg R-modules. Suppose that M is fg and is generated by
m1, . . . mn. Let φ be an R-linear map and write

φ(mj) =
n∑

i=1

aijmi,

where we note that there may be many choices for the aij . We can see A = (aij)
as an n× n matrix which represents φ.

Fact (the “Cayley-Hamilton theorem”): if p is the determinant of the matrix
xI − A then p ∈ R[x] is monic and p(φ) = 0, to be more explicit if p =

∑n
i=0 aix

i

then for all m ∈ M we have
∑n

i=0 aiφ
i(m) = 0.

Proof: Computation which we omit. Maybe sketch later.
We only use the corollary: if M is fg, I is an ideal, and φ is a linear map from

M to M with im(φ) ⊆ IM , then there is p = xn +
∑

i<n aix
i such that ai ∈ I and

p(φ) = 0.
A very important corollary is
Nakayama’s lemma: if I is contained in the Jacobson radical of R, M is fg and

M = IM then M = 0.
Proof of Nakayama: let φ = idM then im(φ) = M ⊆ IM = M , so we get that

there is a ∈ I such that (1 + a)m = 0 for all m. Since a is in the Jacobson radical,
1 + a is a unit and so m = 0 for all m ∈ M that is M = 0.

Now we discuss integrality: this is a generalisation of algebraicity in field theory
but is somewhat less well-behaved (in particular the notion of the algberaic closure
of a field has no exact parallel).

If A and B are rings with A ≤ B and b ∈ B, we say b is integral over A iff
p(b) = 0 for some monic p ∈ A[x].

We need the notion of a faithful module: M is faithful iff Ann(M) = 0 where
Ann(M) is the ideal of R given by

Ann(M) = {r ∈ R : ∀m ∈ M rm = 0}
The following characterisations are very useful:

Theorem 1. Let A ≤ B and b ∈ B.
(1) b is integral over A.
(2) A[b] is module finite over A.
(3) There is a subring B′ of B such that A[b] ⊆ B′ and B′ is module finite over

A.
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(4) There is a faithful A[b]-module M which is fg as an A-module.

Proof. To show 1 implies 2, suppose that b is integral over A. We have an equation
bn =

∑
i<n aib

i with ai ∈ A and by an easy induction all powers of b lie in the
A-submodule generated by {bj : j < n}.

To show 2 implies 3 let B′ = A[b]. To show 3 implies 4 let M = B′ (note: if
R ≤ S then S is always a faithful R-module, because if r ∈ Ann(S) then r = r1 = 0)

Finally we show 4 implies 1. Consider the map φ : m 7→ bm, this is A-linear
and so there is monic p ∈ A[x] with p(φ) = 0. This is equivalent to saying that
p(b)m = 0 for all m ∈ M , and by faithfulness we have p(b) = 0. �

Remark: If k and l are fields with k ≤ l then b ∈ l is algebraic over k iff it is
integral over k.

Definition 1. Let A ≤ B.
(1) The integral closure of A in B is the set of b ∈ B which are integral over

A.
(2) B is integral over A iff all b ∈ B are integral over A, that is the integral

closure of A in B is B.
(3) A is integrally closed in B iff all elements which are integral over A are in

A, that is the integral closure of A in B is A.

Theorem 2. Let A and B be rings with A ≤ B. The integral closure of A in B is
a subring of B.

Proof. Let b1 and b2 be integral over A. Immediately from the definition b2 is
integral over A[b1], so A[b1] is module finite over A and also A[b1, b2] is module
finite over A[b1]. By an old argument (just multiply the generating sets) we see
that A[b1, b2] is module finite over A, so that by clause 3 in the characterisation of
integrality above all elements of A[b1, b2] are integral over A. In particular b1 + b2

and b1b2 are integral over A. �

Theorem 3. Let A,B, C be rings with A ≤ B ≤ C. If B is integral over A and C
is integral over B then C is integral over A.

Proof. Let c ∈ C and let f ∈ B[x] be monic with f(c) = 0. Let b1, . . . bm be the
coefficients of f . Arguing as in the last proof B′ = A[b1, . . . bm] is module finite
over A, and since f ∈ B′[x] we see that c is integral over B′ so that B′[c] is module
finite over B′. Hence B′[c] is module finite over A, thus (clause3 in the equivalence
again) c is integral over A. �


