
CA LECTURE 12

SCRIBE: LARS AIKEN

Let R be a ring, M an R-module and S ⊆ R an MC set. We show that S−1M
and S−1R⊗R M are IMic as S−1R-modules.

Consider the map (a/s, m) 7→ am/s from S−1R ×M to S−1M . Routinely it is
well-defined and R-bilinear, we show it is initial in the category of R-bilinear maps
on S−1R×M .

So let φ : S−1R × M → N be bilinear. We claim that if am/s = bn/t then
φ(a/s, m) = φ(b/t, n). By defn if am/s = bn/t there is u ∈ S such that u(atm −
bsn) = 0. Now we have

φ(a/s, m) = φ(atu/stu, m) = φ(1/stu, atum) =

φ(1/stu, bsun) = φ(bsu/stu, n) = φ(b/t, n),
by a series of appeals to the R-linearity in each variable. Now attempt to define
γ : S−1M → N by γ : m/s 7→ φ(1/s,m). By the calculation above γ is well-defined.
R-linearity follows from the calculations

γ(am/s) = φ(1/s, am) = aφ(1/s,m) = aγ(1/s,m),

γ(m/s + n/t) = γ((tm + sn)/st) = φ(1/st, tm + sn) =

= φ(1/st, tm) + φ(1/st, sn) = φ(1/s,m) + φ(1/t, n) = γ(m/s) + γ(n/t).
So by uniqueness of initial objects there is a unique IM of R-modules β from

S−1R ⊗R M to S−1M with β : a/s ⊗m 7→ am/s. Notice that since this is an IM
every element of the tensor product can be written as 1/t ⊗ m for some m ∈ M
and t ∈ S (we could have proved this directly, see A and M Prop 3.5)

Jonathan Gross makes the reasonable complaint that we promised an IM of
S−1R-modules so we verify that β behaves well wrt the scalar multiplication by
elements of S−1R. This is easy:

β(a/s(1/t⊗m) = β(a/st⊗m) = am/st = a/sβ(1/t⊗m).

Fact: let R be a ring, M and N be R-modules and S ⊆ R is MC. Then S−1(M⊗R

N) ' S−1M ⊗S−1R S−1N as S−1R-modules.
We use the IM thm from the end of last time and the observation that the HM

a 7→ a/1 from R to S−1R makes S−1R into an R-algebra. In particular every S−1R-
module (including S−1R!) is naturally an (R,S−1R)-bimodule and vice versa. All
the isomorphisms in the proof that follows are to be construed as IMs of (R,S−1R)-
bimodules.

We know that S−1M ⊗S−1R S−1N ' (M ⊗R S−1R)⊗S−1R (S−1R⊗R N) By two
appeals to the associative law from last time (M ⊗R S−1R)⊗S−1R (S−1R⊗R N) '
M ⊗R (S−1R ⊗S−1R S−1R) ⊗R N . For any ring B we have B ⊗B B ' B, so
M⊗R(S−1R⊗S−1RS−1R)⊗RN ' M⊗RS−1R⊗RN , and finally M⊗RS−1R⊗RN '
S−1R ⊗R (M ⊗R N) ' S−1(M ⊗R N). A little thought shows that under the IM
we have m/s⊗ n/t 7→ 1/st(m⊗ n).
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We just saw that the S−1 construction commutes with the ⊗ construction. It
can be observed that actually S−1 commutes with many constructions in algebra.
As a partial explanation of this fact we define “exact sequences” and show that
S−1 preserves exactness.

Fix a ring R. An exact sequence of R-modules is a sequence of maps fi : Mi−1 →
Mi such that im(fi) = ker(fi+1).

We let 0 denote the zero module, and note that this is both initial and final
in the category of R-modules. A short exact sequence is a sequence of the form
0 → M → N → P → 0. Now the map M → N is injeective, the map N → P
is surjective, and by the first IM theorem P ' N/M ′ where M ′ is the isomorphic
copy of M given by the image of the injective map M → N .

Cultural note: we can break down a long exact sequence of maps fi : Mi−1 →
Mi as a bunch of short exact sequences 0 → Ni → Mi → Ni+1 → 0, where
Nj = im(fj) = ker(fj+1), Ni → Mi is the inclusion map, Mi → Ni+1 is just fi+1

with its codomain restricted.
We would like to view the S−1 construction as a functor from the category of

R-modules to the category of S−1R-modules. We already defined S−1M and made
it into an S−1R-module. Now if γ : M → N is an R-linear map we attempt to
define S−1γ : S−1M → S−1N by S−1γ : m/s 7→ γ(m)/s.

Routinely: S−1γ is well-defined, S−1(idM ) = idS−1M , S−1(γ ◦δ) = S−1γ ◦S−1δ.
This is enough to see it is a functor. Actually it has other nice properties: we will
use the (easy!) facts that S−10 = 0 and if γ is the zero map from M to N then
S−1γ is the zero map from S−1M to S−1N .

Theorem 1. If fi : Mi−1 → Mi is an exact sequence of R-modules then S−1fi :
S−1Mi−1 → S−1Mi is an exact sequence of S−1R-modules.

Proof. Since fi+1 ◦ fi = 0, it follows from the properties of the S−1 functor that
S−1fi+1 ◦S−1fi = 0, where we abuse notation and use “0” as a generic name for a
map which is constantly zero. So the image of S−1fi is contained in the kernel of
S−1fi+1.

Conversely let m/s ∈ ker(S−1fi+1), so by definition fi+1(m)/s = 0 in S−1Mi+1.
By definition there is u ∈ S with ufi+1(m) = 0, and by the R-linearity of fi+1 we
have fi+1(um) = 0, so that by exactness of our original sequence um ∈ ker(fi+1) =
im(fi). Fix b ∈ Mi−1 with fi(b) = um, and define v ∈ S−1Mi−1 by v = b/us. Then
by definition S−1fi(v) = fi(b)/us = um/us = m/s, so that m/s ∈ im(S−1fi) as
required. �

As a sample application we study the interaction of S−1 with the quotient module
construction. Suppose that M and N are R-modules with M ≤ N and consider
the short exact sequence 0 → M → N → N/M → 0 with the usual inclusion and
quotient maps. By the work above S−10 = 0 → S−1M → S−1N → S−1N/M →
S−10 = 0 is short exact. So we may conclude that S−1M ≤ S−1N (contrast
the nasty situation with tensor products!) and that S−1N/M ' S−1N/S−1M as
S−1R-modules.


